We prove that if some power of a space X is rectiflable, then X[sup]πω(x) is rectifiable. It follows that no power of the Sorgenfrey line is a topological group and this answers a question of Arhangeliskiî. We also show that in Mal'tsev spaces of point-countable type, character and π-character coincide.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study retracts of coset spaces. We prove that in certain spaces the set of points that are contained in a component of dimension less than or equal to n, is a closed set. Using our techniques we are able to provide new examples of homogeneous spaces that are not coset spaces. We provide an example of a compact homogeneous space which is not a coset space. We further provide an example of a compact metrizable space which is a retract of a homogeneous compact space, but which is not a retract of a homogeneous metrizable compact space.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.