Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents general information on LTCC materials, manufacturing processes and properties of fired modules. A Multichip Module package has been the main application of Low Temperature Cofired Ceramic (LTCC) technology. Recently, this technology is also used for production of sensors, actuators and microsystems. The research and development on the LTCC sensors and microsystems carried out in the Laboratory of Thick Film Microsystems at Wroc1aw University of Technology are presented. LTCC microfluidic system is described in detail. Moreover, a short information is given on other LTCC applications.
2
Content available Investigation of LTCC thermistor properties
51%
EN
The work is conducted on NTC (Negative Temperature Coefficient) thermistors. An influence of different type of the substrate (DP 951 and lead free ESL 41020) on basic electrical properties: sheet resistance at a room temperature, R = f(T) dependence, B constant and a long-term stability is analyzed. The resistance values are measured twenty times in the range from 25°C to 125°C at 5°C intervals, while temperature is recorded using Pt-100 resistor. Long-term stability is investigated by annealing at 150°C for 200 h.
PL
W pracy przedstawiono wyniki badań związanych z elementami termistorowymi NTC (Negative Temperature Coefficient). Zbadano wpływ rodzaju podłoża (DP 951 i bezołowiowego ESL 41020) oraz konfiguracji elementów (zagrzebane, powierzchniowe) na podstawowe parametry elektryczne: rezystancję na kwadrat, zależność rezystancji od temperatury, stałą termistorową B, stabilność długo terminową. Wartości rezystancji były mierzone 20 razy w zakresie od 25°C do 125°C ze skokiem 5°C temperatura była mierzona za pomocą rezystora PT-100. Stabilność długoterminowa była badana przez wygrzewanie w 150°C przez 200 h.
3
Content available remote Optical pH detector based on LTCC and sol-gel technologies
51%
EN
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wrocław, Poland This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.
EN
A novel miniature plasma generator made of low temperature co-fired ceramics (LTCC) is presented in this paper. The developed generator is composed of a stack of 9 ceramic tapes, has an optical fibre integrated into the structure and is consisted of an 8.7 x 3.5 mm2 plasma chamber placed between two 5 x 5 mm2 electrodes made of AgPd. Each electrode is separated from the plasma chamber by a single LTCC tape, forming a 660 μm thick gap. The shape of the plasma chamber and the channel for the optical fibre were cut in green LTCC tapes using an UV laser, and the electrodes were fabricated with the standard screen-print method. During the experiments, the plasma chamber was filled with an ambient air. The plasma was generated between AgPd electrodes connected to an AC power supply. The light of the air plasma was transmitted from the plasma chamber to the miniature spectrometer using the integrated optical fibre. The glow discharge in the air at atmospheric pressure was characterized by optical emission spectroscopy (OES).
PL
W artykule przedstawiono technologię miniaturowego generatora plazmy. Wspomniany układ został wykonany za pomocą techniki bazującej na niskotemperaturowej współwypalanej ceramice LTCC (Low Temperature Co-fired Ceramics). Urządzenie składało się z 9 warstw ceramiki LTCC. W skład opracowanego generatora wchodziły komora plazmowa o wymiarach 8,7 x 3,5 mm2 oraz dołączony do niej światłowód kwarcowy. Komora plazmowa umieszczona była pomiędzy dwiema elektrodami o wymiarach 5 x 5 mm2 wykonanymi ze stopu PdAg. Każda z elektrod została odizolowana od komory plazmowej za pomocą pojedynczej warstwy LTCC tworząc szczelinę o grubości 660 μm. Kształt komory plazmowej oraz kanału pod światłowód zostały wycięte w surowych foliach ceramicznych za pomocą lasera UV. Elektrody PdAg zostały naniesione na ceramikę LTCC metodą sitodruku. Podczas eksperymentów komora plazmowa wypełniona była powietrzem z otoczenia o ciśnieniu atmosferycznym. Plazma powietrza generowana była pomiędzy dwiema izolowanymi elektrodami zasilanymi napięciem zmiennym. Promieniowanie optyczne plazmy powietrza było transmitowane z komory plazmowej do miniaturowego spektrometru za pomocą zintegrowanego światłowodu. Obserwowane wyładowanie jarzeniowe w powietrzu analizowano metodą optycznej spektroskopii emisyjnej (OES).
5
Content available remote Impact of processing parameters on the LTCC channels geometry
51%
EN
A great advantage of Low Temperature Co-fired Ceramics (LTCC) yields the possibility of channel and air cavity fabrication. Such empty spaces have numerous applications, for example, in microfluidics, microwave techniques and integrated packaging. However, improper geometry of these structures can degrade the performance of the final device. The processing parameters recommended by the LTCC tape supplier are relevant for the production of multilayer circuits but not surface embedded channels and/or cavities. Thus, it is important to examine which factors of the fabrication process are the most significant. In our study, special attention has been paid to the geometric performance of the channel structure resulting from the applied processing parameters. Laser cutting parameters were checked to obtain the structures with great fidelity. The impact of an isostatic lamination on the quality of the final structure was analyzed. The influence of pressure and temperature of the lamination process on the channel geometry and tape shrinkage were examined. The performed experiments showed that some improvements in channel/cavity geometry may be achieved by optimizing the processing procedures. The microscopic observations combined with the Analysis of Variance (ANOVA) showed which combinations of the processing parameters are the best for achieving a channel/cavity structure with the desired geometry.
PL
Przedstawiono konstrukcję przepływowego amperometrycznego czujnika enzymatycznego, wykonanego w technologii LTCC (ceramika niskotemperaturowa współwypalana). Konstrukcja czujnika przepływowego opiera się na półprzepuszczalnej kapilarze dializacyjnej, przechodzącej przez mikroreaktor wypełniony roztworem zawierającym enzym. Stężenie oznaczanej substancji jest wyznaczane na podstawie pomiaru prądu, którego wartość zależy od stężenia elektroaktywnego produktu reakcji katalizowanej przez enzym.
EN
In this paper, construction of a flow-through amperometric enzymatic sensor made in LTCC (Low Temperature Co-fired Ceramics) is reported. Construction of the flow-trough sensor is based on semi-permeable dialysis tubing built-in a microreactor filled with solution containing enzyme. Concentration of the analyte is determined by the measurement of current, which value depends on concentration of the electroactive product of the reaction catalyzed by the enzyme.
7
Content available remote LTCC microfluidic systems for biochemical diagnosis
51%
EN
This paper presents design, fabrication and testing of three LTCC (Low Temperature Co-fired Ceramics) based microfluidic systems. These microdevices are: enzymatic microreactor for urea determination, potentiometric sensor with ion selective electrodes (ISE) based array sensitive to potassium ions and amperometric glucose sensor. Performance of the presented LTCC-based microfluidic systems has been tested. All ceramic microdevices have revealed high output signal and large detection range. The properties of the presented LTCC-based microfluidic systems are comparable with similar ones made of silicon. Obtained results has shown that presented ceramic microsystems can work as a stand-alone device or can be integrated into a more sophisticated micro analysis system for in vivo or in vitro monitoring of various (bio)chemical compounds.
PL
W artykule przedstawiono konstrukcję przepływowego ceramicznego mikroreaktora chemicznego oraz sterownik temperatury do tego urządzenia. Mikroreaktor wykonano w technologii LTCC (niskotemperaturowa ceramika współwypalana). Charakterystyki temperaturowe mikrosystemu zmierzono stosując bezstykowy pomiar termograficzny. W pamięci mikroprocesora sterującego temperaturą zaimplementowano algorytm PID (regulator proporcjonalno-całkująco-różniczkujący). Umożliwia on dobór parametrów stabilizacji temperatury mikroreaktora zależnie od zapotrzebowania.
EN
In this paper, cpnstruction and investigation of a flow-through ceramic microreactor with integrated microprocessor temperature controller properties is reported. The microreactor is made using LTCC (Low Temperature Co-fired Ceramics) technology. Transient measurements of the temperature were made using thermography system. PID (Proportional-Integral-Derivative controller) algorithm was implemented in a microcontroller memory. Therefore, parameters of the temperature regulator can be adopted to specific demands.
9
51%
EN
Preliminary works on optical planar waveguides made from two different materials on LTCC (low temperature cofired ceramic) substrates have been presented. Sol-gel-derived silica and glaze layers were used to prepare the waveguide structure. This kind of component can be used in integrated optoelectronics devices, which implicates a higher scale of integration and reliability. Furthermore, thanks to this method, it is possible to connect passive components made in thick-film technology with planar optical waveguides on one substrate. Described structures can be used in many devices. The most interesting is their application in sensors with optical detection, telecommunication elements, e.g. optical switches or devices called "lab-on-chip". The main aim of the research was to develop a new method of producing optical planar waveguides. Choosing the best materials for both types of layers was made in the first part of the investigation. Very important is the compatibility of the materials and the interaction with LTCC substrate, especially during firing. This kind of test was made. The paper presents the results of experiments for choosing the best type of glaze from four low temperatures, and transparent types of them. Verification of interactions between a silica layer and a glaze determines the best process parameters. Optimization of a waveguide size and shape is described as well.
EN
The DNA (deoxyribonucleic acid) amplification chip made of DP951 (from DuPont) ceramics consists of a microchamber, internal and external metallization. The external metallization is used for attachment of SMD (surface mount device) electronics elements. The internal metal layer improves thermal conditions inside the chamber. The temperature distribution in the chamber is verified by numerical simulation. Heating is realized by an external SMD resistor. The temperature measurements are made by attached Pt100 component. The temperature control is realized by a microcontroller based electronic system. Settings and visualization of the polymerase chain reaction (PCR) process parameters are actualized by dedicated PC (personal computer) software. The system is successfully tested. The DNA amplification inside the low temperature co-fired ceramics (LTCC) chip is achieved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.