W artykule przedstawiono problemy związane z naprawami i remontami ponad 100-letnich konstrukcji stalowych infrastruktury kolejowej. Skorodowane, ale nadal użytkowane tego typu obiekty wymagają napraw i wzmocnień. Typowe wzmocnienia przez spawanie są zazwyczaj wykluczone z uwagi na trudne do wiarygodnego określenia parametry materiału konstrukcyjnego. To wpływa również na możliwe sposoby oceny nośności. Często pozostaje tylko dodatkowe i tymczasowe podparcie, co nie jest zadaniem oczywistym z uwagi na niebezpieczeństwo wprowadzenia sił o przeciwnych znakach i wcześniejsze zniszczenie konstrukcji przez utratę stateczności.
EN
The article presents problems related to repairs and renovations of over 100-year-old steel structures of the railway infrastructure. Corroded objects still in use require repairs or reinforcements. Typical welding reinforcement is usually not an option due to the difficulty in reliable determining parameters of the structural material. That also affects possible ways of assessing load capacity. Often, all that remains is additional and temporary support what is not an obvious task due to the danger of introducing forces with opposite signs and earlier destruction of the structure by loss of stability.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present study investigated the structural behaviour of aluminium–concrete composite (ACC) beams with profiled sheeting by means of conducting four-point bending tests on four ACC beams. In the proposed ACC system, a concrete slab was connected to aluminium girders by mechanical shear connectors developed by the authors of this article. The load-slip behaviour of the connections was characterised in push-out tests of connectors. In addition, non-linear 3D finite element (FE) models of the tested joints and composite beams were developed and verified against the experimental results. The comparison between the experimental and numerical results indicates that the adopted 3D model can capture the response of the ACC joints and composite beams fairly well.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper presents a numerical simulation and a theoretical investigation of an aluminiumconcrete composite (ACC) beam subjected to bending. ACC structures are similar to steel-concrete composite (SCC) structures. However, their girders are made of aluminium instead of steel. The use of ACC structures is limited because of the lack of relevant design rules. Due to this fact the authors suggest applying the theory for SCC structures to ACC structures. In this paper, the methods for calculating the bending resistance and the stiffness of ACC beams were presented. What is more, the results from the theoretical investigation were compared with the results from the laboratory tests conducted by Stonehewer in 1962. The calculated plastic resistance moment of the ACC beam with partial shear connection was 1.2 times lower than the bending resistance from the laboratory test. The calculated stiffness was 1.1 higher than the stiffness from the laboratory test. What is more, the authors of this paper prepared two numerical models of the ACC beam. The analysed models had different types of connection between the aluminium beam and the concrete slab. In the first variant, the aluminium beam was permanently connected with the concrete slab to model full composite action. In the second variant, the aluminium beam and the concrete slab were connected using zero-length wires, the characteristics of which were taken from the laboratory test, to take slip into account. The numerical model with zero-length springs adequately captured the elastic response of the ACC beam from the laboratory test conducted by Stonehewer.
The article analyses the method of enhancing a steel beam by adding additional steel members like ribs. They are rigidly connected with both flanges in a plane parallel to the web. That plates reduces warping during in-plane bending of steel beam under lateral-torsional bucking. Different thicknesses of steel plates used as ribs and different cross sections were taken into account. Calculations were conducted using FEM and ABAQUS CAE environment. The outcomes were compared with ones from previous studies which concerned an influence of endplates on load-bearing capacity of an I-beam.
Opisano belki zespolone drewniano-betonowe, stalowo-drewniane, drewniano-aluminiowe, drewniano-szklane oraz drewniano-drewniane. Omówiono możliwości zastosowania ich w budownictwie.
EN
The authors of this paper present a review of timber-concrete, steel-timber, aluminium-timber, timber-glass and timber-timber composite beams. The possibility of their use in civil engineering was discussed.
This paper presents a review of composite structures in which aluminium alloys are used. Current trends in the research of composite structures with aluminium girders and their possible applications in structural engineering were shown. In the presented solutions, advantageous properties of aluminium alloys were exploited, such as high strength-to-weight ratio, corrosion resistance and recyclability. The authors demonstrated the structural behaviour of aluminium-concrete and aluminium-timber composite beams based on their own tests as well as investigations presented in the literature. Furthermore, aluminium-concrete composite columns, a composite mullion made of an aluminium alloy and timber, and a military bridge consisting of aluminium truss components, a stay-in-place-form, reinforcement and concrete were presented. In addition to the description of the structural elements, the main conclusions from their experimental, theoretical and numerical analyses were also demonstrated in this paper. The connection of aluminium girders with concrete or timber slabs provided for the increase of the load-bearing capacity and stiffness, and it eliminated the problem of local buckling in girder flanges and lateral-torsional buckling of girders in the analysed solutions.
PL
W pracy przedstawiono przegląd zespolonych konstrukcji, w których zastosowano stopy aluminium. Omówiono aktualne kierunki badań nad konstrukcjami zespolonymi z dźwigarami ze stopu aluminium oraz możliwe ich zastosowania w budownictwie. W prezentowanych rozwiązaniach wykorzystano zalety stopów aluminium m.in. korzystny stosunek wytrzymałości do ciężaru, odporność na korozję oraz przydatność do recyklingu. Autorzy opisali zachowanie belek zespolonych aluminiowo-betonowych oraz drewniano-betonowych, biorąc pod uwagę własne badania, jak i te znane z literatury. Dodatkowo, scharakteryzowano słupy zespolone aluminiowo-betonowe, słupek zespolony aluminiowo-drewniany zastosowany w konstrukcji fasadowej oraz wojskowy most składający się z kratownicy ze stopu aluminium, szalunku traconego, zbrojenia oraz betonu. Oprócz opisu elementów konstrukcyjnych, przedstawiono główne wnioski z ich analizy eksperymentalnej, teoretycznej oraz numerycznej. Połączenie dźwigarów ze stopu aluminium z płytami wykonanymi z betonu lub drewna zapewniło wzrost nośności oraz sztywności dźwigarów oraz wyeliminowano problem lokalnego wyboczenia pasa dźwigara oraz jego zwichrzenia.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.