Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The generalized compact-open topology τc on partial continuous functions with closed domains in X and values in Y is studied. If Y is a non-countably compact Čech-complete space with a Gδ-diagonal, then τc is Čech-complete, sieve complete and satisfies the p-space property of Arhangel'skii, respectively, if and only if X is Lindelof and locally compact. Lindelofness, paracompactness and normality of τc is also investigated. New results are obtained on Čech-completeness, sieve completeness and the p-space property for the compact-open topology on the space of continuous functions with a general range Y.
EN
The notion of even-outer-semicontinuity for set-valued maps is introduced and compared with related ones from [4] and [11]. The coincidence of these notions provides a new characterization of compactness and of local compactness. The following result is proved: Let X be a topological space, Y a uniform space, {Fσ : σ ∈ ∑} be a net of set-valued maps from X to Y and F be a set valued map from X to Y. Then any two of the following conditions imply the third: (1) the net {Fσ : σ ∈ ∑} is evenly-outer semicontinuous; (2) the net {{Fσ : σ ∈ ∑} is graph convergent to F; (3) the net {Fσ : σ ∈ ∑} is pointwise convergent to F. This theorem generalizes some results from [4] and [11].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.