In this paper we obtain results on approximation, in the multidimensional complex case, of functions from $𝓐^{∞}(K)$ by complex polynomials. In particular, we generalize the results of Pawłucki and Pleśniak (1986) for the real case and of Siciak (1993) in the case of one complex variable. Furthermore, we extend the results of Baouendi and Goulaouic (1971) who obtained the order of approximation in the case of Gevrey classes over real compacts with smooth analytic boundary and we present the orders of approximation of certain intermediate classes of holomorphic ultradifferentiable jets $𝓗_{M}(K)$. In addition to the property (HCP), a crucial role will be played by a new geometrical criterion over the compact (property (ŁS)).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.