Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Water and wind erosion are the most powerful factors in the decrease of soil fertility and a threat to food security. The study was conducted on the steppe zone in Ukraine (total area of 167.4 thous. km2), including agricultural land (131.6 thous. km2). At the first stage, the modeling of spatial differentiation of water and wind erosion manifestations was carried out to calculate losses of soil (Mg∙ha–1) and to determine their degradation. At the second stage, soil-climatic bonitet of zonal soils (points) is carried out to determine their natural fertility (Mg∙ha–1). At the third stage, the spatial adjustment of the natural soil fertility to the negative effect of erosion was carried out. This made it possible to calculate crop losses and total financial losses due to water and wind erosion. The integrated spatial modeling showed that about 68.7% of arable land was constantly affected by the combined erosion, in particular the area of low eroded arable land (16.8%), and medium and highly eroded land (22.1%). Due to erodibility of soil, about 23.3% of agricultural land transferred from the category of high and medium quality to medium, low and very low quality, which is caused by the loss of soil fertility of up to 70%, crop losses of up to 1.93 Mg∙ha–1 ha–1 and eduction of agricultural income up to 390 USD∙ha–1. In the steppe region under the research, gross crop losses from erosion were up to 15.11 thous. Mg∙ha–1 (3.05 mln USD). In order to protect soils, improve fertility and increase crop yields in the steppe zone in Ukraine, the following measures were suggested: adaptive and landscape erosion control design with elements of conservation farming in accordance with the spatial differentiation of soil quality and extent of water erosion deflation danger.
EN
The article presents results of quality class determination and regulatory and monetary valuation of agricultural land in the steppe soils irrigation zone using the Karmanov’s methodology of soil and climatic quality class determination and author's methodology of ecological, agro-ameliorative and climatic soils quality class determination. Based on the results of spatial modeling, a series of maps was created and characteristics of ecological, agro-ameliorative and relief and climatic components of soils quality class were presented based on the example of the Kherson Region, Ukraine. According to the results soil and climatic quality class determination, it is established that the value of the class varies from 25 to 46 points; the regulatory and monetary value of agricultural land varies from USD 490 per 1 ha for dark chestnut and chestnut alkaline soils up to USD1,360 per ha for ordinary chernozem. According to the results of ecological, agro-ameliorative and climatic soils quality class determination, it is established that the value of the class varies from 6 to 59 points; the regulatory and monetary value of agricultural land varies from USD145 per 1 ha for degraded and highly saline chestnut soils up to USD2,060 per ha for irrigated southern chernozem. The suggested methodology of soil quality class calculation can have multiple purposes. It is intended to be used for different physiographic conditions of land use to develop adaptive soils protection measures at different territorial levels of agricultural production management with the overall objective of ensuring sustainable land use.
EN
The purpose of the study was to establish dependence of sunflower productivity on hybrid plasticity under the climatic conditions of the Steppe zone and effectiveness of growth-regulators on the basis of the analysis of differentiation of a vegetation index. The research on the development and productivity of different sunflower hybrids under the natural-climatic conditions of the Steppe zone of Ukraine was conducted in the years of 2019 (medium-wet), 2020 (dry) and 2021 (wet). Spatio-temporal differentiation of the vegetation of sunflower hybrids was established on the basis of calculation of a normalized difference vegetation index (NDVI) using the data of the decoded space images of Sentinel 2. Cartographic and grapho-analytical materials reflecting the reaction of plants to natural-climatic conditions and multifunctional growth-regulators were obtained. The dependence of the reaction of sunflower hybrids to multifunctional growth-regulators on their plasticity in response to the natural-climatic conditions of the Steppe zone was established. There was a weak reaction to application of growth-regulators of the sunflower hybrids Oplot and P64HE133 which are characterized by a high level of plasticity in response to the natural-climatic conditions of the Steppe zone. It was proven that the application of the biological preparation Helafit Combi exceeded the level of agrocenoses productivity in comparison with the chemical preparation ArchitectТМ by 1.1-5.4%. It was established that foliar treatment with growth-regulators led to a decline in water uptake by the sunflower hybrids by 1.2–10.0% in the dry year, by 3.8–8.6% in the medium-wet year and by 3.7%–21.9% in the wet year. There was a significant reduction in the level of water uptake by the hybrid Hector – by 7.7–10.0% and the hybrid 8KH477KL – by 1.2–21.9%. The research results are the basis for forecasting the development of sunflower hybrid crops with further measurement of the crop productivity that allows establishing a probable level of efficiency of sunflower hybrid production by agricultural producers under the climatic conditions of the Steppe zone.
EN
Spatio-temporal assessment of the sustainability of agricultural landscapes over a long period (1892–2020 – 130 years) was carried out on the basis of archival spatial data for the territory of the Dnieper district of the Tauride province and modern data from the State Agency for Water Resources of Ukraine. Taking into account the historical patterns of the development of agriculture on the territory of the Dnieper district and the results of spatial modeling in 1892, territories with low (4.1 thousand hectares – 0.3% of the total area) and medium (310.3 thousand hectares – 23.8%) level of sustainability of agricultural landscapes, which are located in the lower reaches of the Dnieper, were identified. However, the large-scale development of the territory for agricultural land and the development of irrigated agriculture have led to the activation of land degradation processes, soil fertility and the deterioration of the stability of agricultural landscapes over large areas. As a result of spatial modeling, the state for 2020 in the irrigation zone recorded significant areas of agricultural land and adjacent territories with low (179.1 thousand hectares – 13.7% of the total area) and medium (419.0 thousand hectares – 32.1%) stability level. A comparative analysis of the stability of agrolandscapes for two time periods (1892 and 2020) showed that large-scale agricultural land development and an imbalanced land-use culture lead to constant and almost irreversible processes of reducing the stability of agrolandscapes in the areas of irrigation reclamation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.