Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The transportation sector is undergoing a profound transformation, shifting from fossil fuel reliance to electric and hybrid semi-electric alternatives. In response, European countries are implementing novel concepts like electrified highways for trucks and buses, bridging the gap between traditional and electric mobility. This paper centers on the management of electric vehicle (EV) charging infrastructure within industrial zones, crucial nodes for charging networks due to their concentrated economic activity and vehicular movement. The study delves into optimal strategies for deploying charging stations in these zones, considering factors such as station placement, capacity planning, and integration with smart grids to ensure efficient and accessible EV charging. Moreover, the research extends its focus to the integration of vehicle-to-grid (V2G) and grid-to-vehicle (G2V) technologies, illustrating their potential within industrial zones. In our research, we have developed algorithms tailored for the infrastructure of industrial zones, focusing on the integration of storage systems and the charging and discharging dynamics of electric vehicles (EVs). Our case study, supported by numerical simulations, illustrates the outcomes of a 24-hour timeframe, where 126 vehicles were charged, and 134 were discharged. The results provide a comprehensive view of how the grid-maintained balance throughout these operations, ensuring that industrial facilities received the required power to fulfill their operational demands.
EN
Studying the impact of renewable energy sources planned to be connected to the grid, requires the preparation of expert opinions. The task of this opinion is to verify that there are possibilities enabling the connection of the considered source to the network. Each opinion is required to take into account other facilities and those sources which were previously connected to the grid or connection agreement were signed with them. The need to take into account such a large number of sources contributes to potential thermal overloads of high-voltage lines. Sometimes these overloads are insignificant, but in certain situations it turns out that their occurrence may be a reason for refusing to sign connection agreements for new sources. According to network operators, their presence may constitute a threat to the operational security of the grid. The article presents the use of the method of tracking active power flows and the DC method of determining power flows to estimate the impact of these sources on thermal overloading of lines. Using of the IEEE-118 test network, selected nodes were analysed where connecting sources might significantly worsen overloads previously observed or would cause new overloads. The proposed approach will enable potential investors to make proper decisions regarding selection of source connection points. Combining the results obtained by both methods at the same time will allow for the indication of appropriate connection nodes for sources from the point of view of minimising the number of overloaded lines and prospective costs of their uprating.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.