Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Diabetic retinopathy (DR) can cause blindness and vision impairment. This degenerative eye condition may lead to an irreversible vision loss. The prevalence of vision impairment and blindness caused by DR emphasizes the critical need for better screening and therapy measures. DR aetiology involves persistent hyperglycemia-induced microvascular abnormalities, oxidative stress, inflammatory reactions, and retinal blood flow changes. Common screening methods for retinal issues include fundus photography, OCT, and fluorescein angiography. For those with diabetic macular edema (DME), it is a common cause of vision loss. Our goal is to develop an automated, cost-effective method for identifying diabetic retinal disease specimens. This study introduces a faster R-CNN method for detecting and classifying DR lesions in retinal images. Those are classified across five different classes. An extensive analysis of 88,704 images from a Kaggle dataset indicates the efficiency of the proposed model, with a reasonable accuracy of 98.38%. The proposed method is robust in disease localization and classification tasks and it has outperformed other existing studies in DR recognition. On evaluating cross-datasets in Kaggle and APTOS, the model has yield better results during training and testing phases.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.