Biometric databases are important components that help improve the performanceof state-of-the-art recognition applications. The availability of more andmore challenging data is attracting the attention of researchers, who are systematicallydeveloping novel recognition algorithms and increasing the accuracyof identification. Surprisingly, most of the popular face datasets (like LFW orIJBA) are not fully unconstrained. The majority of the available images werenot acquired on-the-move, which reduces the amount of blurring that is causedby motion or incorrect focusing. Therefore, the COMPACT database for studyingless-cooperative face recognition is introduced in this paper. The datasetconsists of high-resolution images of 108 subjects acquired in a fully automatedmanner as people go through the recognition gate. This ensures that the collecteddata contains real-world degradation factors: different distances, expressions,occlusions, pose variations, and motion blur. Additionally, the authorsconducted a series of experiments that verified the face-recognition performanceon the collected data.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.