Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 32, nr 5
844-850
PL
Nanomateriały stanowią obecnie ważną grupę materiałów znajdujących zastosowanie prawie we wszystkich dziedzinach przemysłu. W badaniach nanomateriałów stwierdzono, że zależność Halla-Petcha nie jest spełniona dla całego zakresu 1÷100 nm. W przypadku nanomateriałów o wielkości ziaren poniżej pewnej wartości krytycznej zaobserwowano efekt zmniejszenia twardości wraz ze zmniejszeniem się wielkości ziarna. Z tego względu wiele badań poświęcono poznaniu ich budowy i mechanizmów odkształcania. Badania prowadzone za pomocą transmisyjnego mikroskopu elektronowego wykazały, że nanokrystaliczne materiały są zbudowane z małych krystalitów o zróżnicowanej orientacji krystalograficznej, oddzielonych od siebie szerokokątowymi granicami ziaren, w których są obserwowane pustki (rys. 1). Pustki te były wyraźnie większe w miejscach styku trzech ziaren, tzw. triple junction. Ze względu na istotny wzrost udziału granic ziaren (rys. 2) wraz ze zmniejszaniem się wielkości ziaren oraz mniejszą gęstość atomową w porównaniu z ziarnami, najczęstszym modelem struktury nanomateriałów jest model dwufazowy składający się fazy wewnętrznej ziarna i fazy granicy ziarna (rys. 3). Jednym z wyjaśnień zjawiska zmniejszenia twardości nanomateriałów jest zwiększenie w budowie nanomateriału udziału granic ziaren (rys. 2), których gęstość jest znacznie mniejsza niż gęstość ziaren oraz odmienne mechanizmy odkształcania. Badania doświadczalne, symulacje dynamiki molekularnej oraz modele odkształcenia nanokrystalicznych materiałów wykazały, że odkształcanie nanomateriałów przebiega na skutek poślizgu wzdłuż granic ziaren, dyfuzji po granicy ziaren, dyfuzji w ziarnach, rotacji ziaren, powstania pasm ścinania, generowania dyslokacji przez granice ziaren, mechanicznego bliźniakowania, a także w wyniku ruchu dyslokacji wewnątrz ziaren, z tym, że ten ostatni mechanizm zanika wraz ze zmniejszaniem się wielkości krystalitów.
EN
Nanomaterials are nowadays very important group of materials which are used in most branches of industry. The investigations of the strength of nanomaterials showed that the Hall-Petch law is not valid in the same form for the whole range from 1 to 100 nm. When the grain size falls below the critical size the effect of decrease of strength (softening) is observed. Therefore, many studies were performed to learn their structure and deformation mechanisms. Investigation performed by means of high resolution transmission electron microscopy (HRTEM) showed that nanocrystalline materials consist of small crystallites of different crystallographic orientations separated by the grain boundaries of large angle type, which consists of pores (Fig. 1). These pores have bigger size at triple junctions. Due to low atomic density of grain boundary and an increase of grain boundary fraction with decrease of grain size (Fig. 2), the most frequent model of nanomaterials structure is two-phase model which consists of the grain interior phase and the grain boundary phase (Fig. 3). One of the explanation of the softening effect of the nanostructured materials is the increase of fraction of grain boundary (Fig. 2), whose density and strength is lower than those of grains. Another explanation says that the softening effect is due to deformation mechanisms that are different from those present in their coarse-grained counterparts. Experimental investigations, molecular dynamic simulation and many models showed that deformation of nanocrystalline materials develops via grain boundary sliding, grain boundary diffusion, shear-band formation, mechanical twinning, dislocation climb, rotation at triple junctions, grain-boundary dislocation creation and annihilation and also via dislocation motion inside grain.
|
|
tom Z. 72
255-262
PL
W pracy przedstawiono wyniki badań nad ustaleniem zależności między zmianą intensywności kawitacji określonej jako gęstość strumienia energii doprowadzonej do materiału przez implodujące pęcherzyki na erozję materiału na przykładzie stopu aluminium PA2.
EN
The effects of the inlet pressure and the distance between the barricades on the distribution of cavitation pulses and on the erosion curves (mass decrease in time) of the PA2 aluminium alloy specimens are presented. Close correlation between the mass loss and the increase of the energy flux delivered to the material is shown.
PL
W pracy opisano urządzenie oraz przedstawiono procedury wytwarzania powłok TiN i CrN, metodami impulsowego reaktywnego rozpylania magnetronowego (MAG) oraz katodowego odparowania łukowego (ARC), na stali X6CrNiTi18-10, która jest często wykorzystywana do wytwarzania elementów maszyn narażonych na zużycie przez kawitacje. Scharakteryzowano skład chemiczny, strukturę, mikrostrukturę oraz właściwości mechaniczne i adhezje powłok. Badania odporności na zużycie przez kawitacje stali X6CrNiTi18-10 oraz wytworzonych na niej powłok TiN i CrN przeprowadzono na stanowisku przepływowym ze szczelinowym wzbudnikiem kawitacji i wodą wodociągową jako czynnikiem roboczym. Stwierdzono, że w zależności od rodzaju powłoki, okres inkubacji ich uszkodzeń, a także zużycie mogą być do 100 % mniejsze niż stali niepokrytej. Analiza z wykorzystaniem mikroskopii skaningowej wskazuje, że proces niszczenia powłok przez kawitacje następuje głównie w wyniku ich pękania i wykruszania, spowodowanych w znacznym stopniu odkształceniem plastycznym podłoża. Jak należało oczekiwać, głównymi czynnikami determinującymi odporność systemu twarda powłoka-podłoże na zużycie przez kawitacje, są adhezja i twardość powłoki oraz twardość podłoża.
EN
An equipment and methods for TiN and CrN deposition by pulse reactive magnetron sputtering (MAG) and cathodic arc evaporation (ARC) on X6CrNiTi18-10 steel, often used for manufacturing the machine elements exposed to a risk of cavitation wear, are presented in this work. Chemical composition, structure, microstructure and mechanical properties of coatings are characterized (Tab. 2 and 3, Fig. 3). Experimental investigations on the resistance of X6CrNiTi18-10 steel with TiN and CrN coatings to cavitation wear were carried out on a flow stand with a slotted cavitator using municipal water as a working medium. It was found that depending on a type of coatings the period of incubation of wear and total wear maybe to 100 % lower than uncoated steel (Fig. 4) An analysis using the scanning electron microscopy revealed that the process of coatings failure due to cavitation was affected by their cracks and followed by chipping, which was mainly caused by plastic deformation of substrate (Fig. 6). It was to expect, that the very important factors determined cavitation wear resistance of hard coating/substrate system are hardness and adhesion of coating and hardness of substrate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.