In this paper we define a distance Fibonacci numbers, also for negative integers, which generalize the classical Fibonacci numbers and Padovan numbers, simultaneously. We give different interpretations of these numbers with respect to special partitions and compositions, also in graphs. We show a construction of the sequence of distance Fibonacci numbers using the Pascal’s triangle. Moreover, we give matrix generators of these numbers, for negative integers, too.
In this paper we show the applications of the Fibonacci numbers in edge coloured trees. We determine the second smallest number of all (A, 2B)-edge colourings in trees. We characterize the minimum tree achieving this second smallest value.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.