Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2023
|
tom Vol. 30, nr 4
689--702
EN
The current machine vision-based surface roughness measurement mainly relies on the design of feature indicators associated with roughness to measure the surface roughness. However, the process is tedious and complicated. Moreover, most existing deep learning methods for workpiece surface roughness measurement use a monochromatic light source to acquire images. In the case of surface roughness in a grinding process with low roughness and random texture characteristics, the feature information obtained by monochromatic light source acquisition is relatively small. It is difficult to extract the workpiece surface roughness features, which can easily cause problems for subsequent measurement. Based on the problems above, this paper proposes a grinding surface roughness measurement method combining red-green information and a convolutional neural network. The technique uses a particular red-green block to highlight the grinding surface texture features. Finally, it classifies the grinding surface roughness measurement with a classification detection technique of the convolutional neural network. Experimental results show that the accuracy of the grinding surface roughness measurement method combining red-green information and the convolutional neural network is significantly improved compared with that of the grinding surface roughness measurement method without using the red-green data.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.