Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The selection of a proper set of views to materialize plays an important role in database performance. There are many methods of view selection that use different techniques and frameworks to select an efficient set of views for materialization. In this paper, we present a new efficient scalable method for view selection under the given storage constraints using a tree mining approach and evolutionary optimization. The tree mining algorithm is designed to determine the exact frequency of (sub)queries in the historical SQL dataset. The Query Cost model achieves the objective of maximizing the performance benefits from the final view set that is derived from the frequent view set given by the tree mining algorithm. The performance benefit of a query is defined as a function of query frequency, query creation cost, and query maintenance cost. The experimental results show that the proposed method is successful in recommending a solution that is fairly close to an optimal solution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.