Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Sub-Pfaffian sets and a generalization of Wilkie's theorem
100%
|
2001
|
tom Vol. 49, no 2
181-189
EN
We prove an analytic generalization of A. Wilkie's well-known theorem on the model completeness of the theory of the real field with exponentiation.
2
Content available remote Lemmass A and B for sub-Pfaffian sets
100%
|
1999
|
tom Vol. 47, no 4
325--336
EN
In this paper we prove two fundamental lemmas of sub-Pfaffian geometry which are counterparts of Lemmas A and B for subanalytic sets [4]. We use a generalized version of the Tangent Mapping Theorem [2], following our program announced in [11].
3
Content available remote Finite linear groups as differential Galois groups
63%
|
2001
|
tom Vol. 49, no 4
361--373
EN
An effective construction of linear differential equations with Galois group a given finite group is presented.
|
|
tom Vol. 26
49--59
EN
In this paper we present a theorem concerning an equivalent statement of the Jacobian Conjecture in terms of Picard-Vessiot extensions. Our theorem completes the earlier work of T. Crespo and Z. Hajto which suggested an effective criterion for detecting polynomial automorphisms of affine spaces. We show a simplified criterion and give a bound on the number of wronskians determinants which we need to consider in order to check if a given polynomial mapping with non-zero constant Jacobian determinant is a polynomial automorphism. Our method is specially efficient with cubic homogeneous mappings introduced and studied in fundamental papers by H. Bass, E. Connell, D.Wright and L. Drużkowski.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.