Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom 6
|
nr 4
581-594
EN
In 1939 Agnew presented a series of conditions that characterized the oscillation of ordinary sequences using ordinary square conservative matrices and square multiplicative matrices. The goal of this paper is to present multidimensional analogues of Agnew’s results. To accomplish this goal we begin by presenting a notion for double oscillating sequences. Using this notion along with square RH-conservative matrices and square RH-multiplicative matrices, we will present a series of characterization of this sequence space, i.e. we will present several necessary and sufficient conditions that assure us that a square RH-multiplicative(square RH-conservative) be such that $$ P - \mathop {limsup}\limits_{(m,n) \to \infty ;(\alpha ,\beta ) \to \infty } \left| {\sigma _{m,n} - \sigma _{\alpha ,\beta } } \right| \leqslant P - \mathop {limsup}\limits_{(m,n) \to \infty ;(\alpha ,\beta ) \to \infty } \left| {s_{m,n} - s_{\alpha ,\beta } } \right| $$ for each double real bounded sequences {s k;l} where $$ \sigma _{m,n} = \sum\limits_{k,l = 1,1}^{\infty ,\infty } {a_{m,n,k,l,} s_{k,l} } . $$ In addition, other implications and variations are also presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.