Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the results of a series of numerical research on the possibility of applying Artificial Neural Networks (ANNs) for ultimate strength calculations of selected parts of rotating machines. The layout and the principle of the algorithm operation were described, beginning from the general assumptions and then moving to the detailed description of the subsequent modules. The effects of applying the algorithm were presented on the example of the analysis of the compressor disc. The significant benefits of using it were the reduction of optimization time by about 40% and the disc weight reduction by 0.5 kg. Accuracy of ANNs was different in each iteration of a presented algorithm. Finally, high accuracy of neural networks was achieved with the following mean values of relevant indices reached in the last iteration: RMSE=0.5983, MAPA=0.0733 and R^2=0.99895. The further perspectives of undertaken research were defined at the end.
EN
This article deals with the exhaust emissions from aircraft turbine engines, which is related to the rapidly growing market for this type of aircraft and its contribution to toxic emissions. The test carried out was done on a business jet turbine engine exhaust pollutants. The test object was the DGEN 380 engine. In order to determine the toxic composition of the exhaust gas as a function of the engine's operating range, an experiment related to the actual engine was conducted in the first stage. The test performed on the static thrust stand of the DGEN 380 turbine engine provided the necessary data on the parameters of the working medium for further research. The actual rotational characteristics of the engine were obtained. It was also determined numerically using GasTurb software. A high correspondence between experimental and calculated parameters was obtained, which gave the possibility of using them in further analyses of the exhaust gas pollutants of the studied engine. The correspondence of the results showed the correctness of the computational model built, thus predestining it for use in further analysis. This paper presents a model of the reverse-flow combustor made for numerical thermal-fluid studies. The thermal-fluid analysis of the model was performed in the ANSYS Fluent environment. The calculations were performed for three shaft speed. The numerical analysis provided information on changes in pollutant components of the exhaust gas of the DGEN 380 aircraft turbine engine as a function of changes in the shaft speed range. The results showed that the levels of nitrogen oxides depend greatly on shaft speed. The model built and the numerical analyses conducted also provided information about the zones inside of liner casing that affect significantly the amount of pollutant compounds obtained, which can then be used in the work on improving the design in terms of reducing the engine exhaust pollutants.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.