This study analyzes the most commonly used operators of the Riemann-Liouville, the Caputo-Fabrizio, and the Atangana-Baleanu integral operators. Firstly, a numerical scheme for the Riemann-Liouville fractional integral has been discussed. Then, two numerical techniques have been suggested for the remaining two operators. The experimental order of convergence for the schemes is further supported by the computations of absolute relative error at the final nodal point over the integration interval [0, T ]. Comparative analysis of the integrals reveals that the Riemann-Liouville fractional integral yields the most minor errors and the most significant experimental order of convergence in the majority of functions, particularly when the fractional-order parameter α → 0. It is worth noting that the Atangana-Baleanu has proved to be an essential operator for solving many dynamical systems that a single RL operator cannot handle. All of the three integral operators coincide with each other for α = 1. Mathematica 11.3 for an Intel(R) Core(TM) i3-4500U procesor running on 1.70 GHz is used to carry out all the necessary computations.
The present study proposes a new explicit nonlinear scheme that solves stiff and nonlinear initial value problems in ordinary differential equations. One of the promising features of this scheme is its fourth-order convergence with strong stability having an unbounded region. A modern approach for relative stability growth analysis is also presented under order stars conditions. The scheme is also good in dealing with singular and stiff type of models. Comparing numerical experiments using various errors, including maximum absolute global error over the integration interval, absolute error at the endpoint, average error, norm of errors, and the CPU times (seconds), shows better performance. An adaptive step-size approach seems to increase the performance of the proposed scheme. The numerical simulations assure us of L -stability, consistency, order, and rapid convergence.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.