Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Holistic Entropy Reduction for Collaborative Filtering
100%
EN
We propose a collaborative filtering (CF) method that uses behavioral data provided as propositions having the RDF-compliant form of (user X, likes, item Y ) triples. The method involves the application of a novel self-configuration technique for the generation of vector-space representations optimized from the information-theoretic perspective. The method, referred to as Holistic Probabilistic Modus Ponendo Ponens (HPMPP), enables reasoning about the likelihood of unknown facts. The proposed vector-space graph representation model is based on the probabilistic apparatus of quantum Information Retrieval and on the compatibility of all operators representing subjects, predicates, objects and facts. The dual graph-vector representation of the available propositional data enables the entropy-reducing transformation and supports the compositionality of mutually compatible representations. As shown in the experiments presented in the paper, the compositionality of the vector-space representations allows an HPMPP-based recommendation system to identify which of the unknown facts having the triple form (user X, likes, item Y ) are the most likely to be true in a way that is both effective and, in contrast to methods proposed so far, fully automatic.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.