Let G be a finite connected graph on two or more vertices, and $G^{[N,k]}$ the distance-k graph of the N-fold Cartesian power of G. For a fixed k ≥ 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of $G^{[N,k]}$. The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.