Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Johnson's projection, Kalton's property (M*), and M-ideals of compact operators
100%
EN
Let X and Y be Banach spaces. We give a "non-separable" proof of the Kalton-Werner-Lima-Oja theorem that the subspace 𝒦(X,X) of compact operators forms an M-ideal in the space 𝓛(X,X) of all continuous linear operators from X to X if and only if X has Kalton's property (M*) and the metric compact approximation property. Our proof is a quick consequence of two main results. First, we describe how Johnson's projection P on 𝓛(X,Y)* applies to f ∈ 𝓛(X,Y)* when f is represented via a Borel (with respect to the relative weak* topology) measure on $\overline{B_{X**} ⊗ B_{Y*}}^{w*} ⊂ 𝓛(X,Y)*$: If Y* has the Radon-Nikodým property, then P "passes under the integral sign". Our basic theorem en route to this description-a structure theorem for Borel probability measures on $\overline{B_{X**} ⊗ B_{Y*}}^{w*}$-also yields a description of 𝒦(X,Y)* due to Feder and Saphar. Second, we show that property (M*) for X is equivalent to every functional in $\overline{B_{X**} ⊗ B_{X*}}^{w*}$ behaving as if 𝒦(X,X) were an M-ideal in 𝓛(X,X).
2
Content available remote On the compact approximation property
80%
EN
We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space 𝔈 = {S ∘ T: S compact operator on X} is an ideal in 𝔉 = span(𝔈,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net $(S_γ)$ of compact operators on X such that $sup_{γ}||S_{γ}T|| ≤ ||T||$ and $S_{γ} → I_{X}$ in the strong operator topology. Similar results for dual spaces are also proved.
3
Content available remote Diameter 2 properties and convexity
70%
EN
We present an equivalent midpoint locally uniformly rotund (MLUR) renorming of C[0,1] with the diameter 2 property (D2P), i.e. every non-empty relatively weakly open subset of the unit ball has diameter 2. An example of an MLUR space with the D2P and with convex combinations of slices of arbitrarily small diameter is also given.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.