The paper presents an overview of various clustering techniques used in data mining. Clustering is an unsupervised learning problem that is used to identify groups in a set of unlabeled data. Data is grouped by probability so that objects of the same group / cluster have similar properties / characteristics [1]. This article aims at exploring and comparing different clustering algorithms. Grouping is used in many areas, including machine learning, pattern recognition, image analysis, information retrieval.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.