This paper tries to introduce a new intelligent method for the early fault diagnosis of diesel engines. Firstly, infrared thermography (IRT) is introduced into diesel engine condition monitoring, then infrared images of diesel engines in four health states, such as normal condition, single-cylinder misfire, multi-cylinder misfire and air filter blockage, are collected and the region of interest (ROI) of infrared images are extracted. Next, conditional generative adversarial network (CGAN) is deployed to perform data augmentation on infrared image datasets. Then, deep convolutional neural network (DCNN) and Softmax regression (SR) classifier are used for automatically extracting infrared image fault features and pattern recognition, respectively. Finally, a comparison with three deep learning (DL) models is performed. The validation results show that the data augmentation method proposed in the paper can significantly improve the early fault diagnosis accuracy, and DCNN has the best fault diagnosis effect andresistance to temperature fluctuation interference among the four DL models.
The construction of health indicators (HI) for traditional deep learning requires human training labels and poor interpretability. This paper proposes an HI construction method based on Stacked Sparse Autoencoder (SSAE) and combines SSAE with Long short-term memory (LSTM) network to predict the remaining useful life (RUL). Extracting features from a single domain may result in insufficient feature extraction and cannot comprehensively reflect the degradation status information of mechanical equipment. In order to solve the problem, this article extracts features from time domain, frequency domain, and time-frequency domain to construct a comprehensive original feature set. Based on monotonicity, trendiness, and robustness, the most sensitive features from the original feature set are selected and put into the SSAE network to construct HI for state partitioning, and then LSTM is used for RUL prediction. By comparing with the existing methods, it is proved that the prediction effect of the proposed method in this paper is satisfied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.