Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 72, no. 2
655--671
EN
Random noise suppression is an essential task in the seismic data processing. In recent years deep learning methods have achieved superior results in seismic data denoising. However, obtaining clean data from field seismic data for training is challenging. Therefore, supervised deep learning denoising methods can only use synthetic datasets or field datasets constructed by conventional seismic denoising methods for training. Aiming at this problem, we proposed a self-supervised deep learning seismic denoising method based on Neighbor2Neighbor. This method only requires sampling the noisy data twice to train the denoising network without clean data. For the characteristics of seismic data, we designed a vertical neighbor subsample to make Neighbor2Neighbor more suitable for seismic data. In addition, to further improve the denoising effect in field data, we introduced a transfer learning strategy in our method. Numerical experiments demonstrated that our method outperformed both the conventional denoising seismic method and the supervised learning seismic denoising method after transfer learning.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.