Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Analysis of dynamic properties of interactive drive systems is lately the object of interest among researches from both academic and industry fields. This interest is reflection of mutually contradicting requirements put into the development of current drive system, mainly the drives itself. On one hand we see the performance and failure-free operation requirements, on the other hand the reduction of energy input, size minimization and operation automation. The paper introduces some of the problems involved in this field.
EN
This paper presents an introduction to meso-scale transport modeling and issues of human behaviour in transport systems. Along with other examples of the human ability to learn in transport systems we look at the comparison of real life data and the prediction of modeling tools for the closure of Vienna’s inner ring road during the 2008 European Football Championship (EURO 2008). Some light is shed on the scientific question, whether currently used modeling tools are able to adequately reproduce the real-life behaviour of human beings in the transport system and should be used for transport policy decision making.
EN
The active magnetic bearing control through analytically designed linear PD regulator, with parallel nonlinear compensation represented by automatic approximator is described in this contribution. Coefficient (parameter) values come from actions of Continuous Action Reinforcement Learning Automata (CARLAs). Influence of CARLAs parameters to learning is discussed. Parameters influence is proved by simulation study. It is shown that learning improvement can be reached by selecting appropriate parameters of learning.
PL
W artykule przedstawiono sterowanie aktywnego łożyska magnetycznego za pomocą analitycznie dobranego regulatora PD z nieliniową kompensacją równoległą. Współczynniki kompensacji są wyznaczane automatycznie z użyciem metody CARLA (Continuous Action Reinforcement Automata). Zbadano wpływ parametrów metody na proces uczenia się kompensatora w oparciu o eksperymenty symulacyjne. Wykazano, że właściwy dobór parametrów metody prowadzi do poprawienia skuteczności procesu uczenia się.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.