The increasing interests in plasmonic nanoantennas focus on changing the resonance wavelength or field localization by changing the shape and size of the nanoantenna. A hollow elliptical dipole nanoantenna (HEDNA) is proposed by adding a slot in the two elliptical arms of the dipole nanoantenna. The plasmonic resonance wavelength and the localized field in the gap zone are increased. Moreover, the slot can be designed to enhance the overall absorption and reduce scattering. The simulations revealed that the antenna with the slot HEDNA scatters just 43% of the incident power and absorbs the remaining 57%, while the parent solid dipole scatters 90% of coupled power and absorbs the residual 10%. This represents switching from a scatterer to an absorber nanoantenna. Moreover, the achieved field enhancement in the gap region of the HEDA is more than three folds that without a slot. The proposed structure is easily applicable in sensing, thermoplasmonics, solar cells, and energy harvesting.
PL
Rosnące zainteresowanie nanoantenami plazmonicznymi koncentruje się na zmianie długości fali rezonansu lub lokalizacji pola poprzez zmianę kształtu i rozmiaru nanoanteny. Zaproponowano wydrążoną eliptyczną nanoantenę dipolową (HEDNA) poprzez dodanie szczeliny w dwóch eliptycznych ramionach nanoanteny dipolowej. Zwiększa się długość fali rezonansu plazmonowego i zlokalizowane pole w strefie szczeliny. Ponadto szczelinę można zaprojektować tak, aby zwiększyć ogólną absorpcję i zmniejszyć rozpraszanie. Symulacje wykazały, że antena ze szczeliną HEDNA rozprasza zaledwie 43% padającej mocy i pochłania pozostałe 57%, podczas gdy macierzysty stały dipol rozprasza 90% sprzężonej mocy i pochłania pozostałe 10%. Oznacza to przejście z nanoanteny rozpraszającej na nanoantenę pochłaniającą. Co więcej, osiągnięte wzmocnienie pola w obszarze szczeliny HEDA jest ponad trzykrotnie większe niż bez szczeliny. Proponowana struktura jest łatwa do zastosowania w wykrywaniu, termoplazmonice, ogniwach słonecznych i pozyskiwaniu energii.
A split circular element is proposed as a unit cell for reflectarray antennas. The unit cell is derived from a circle divided into four equal sectors. The radius of two oppositely located sectors is then scaled by a certain factor to form the proposed shape. The CST Microwave Studio Suite software simulator was used to investigate the performance of the proposed unit cell, which was evaluated using Floquet port excitation. The designed element's reflection phase range was compared to that of a conventional circular patch. Four scenarios of varied substrate characteristics are investigated for the antenna to establish the best performance parameters. The simulations showed that a basic substrate with a thickness of 0.16 mm and a dielectric constant of 3.2, backed by a 3 mm foam with a dielectric constant of 1.05 and a scaling factor of 0.72 offers a wide phase range of 601.3°. The obtained phase slope is 76.37°/mm or 134°/GHz.
This paper demonstrates the feasibility of reducingradar cross-section by employing resistive sheets or rings inthe conducting elements of an FSS unit cell. The idea behindthe approach in question is to create power-absorbing elementswhich may help reduce the power reflected from FSS surface.The investigated FSS unit cells have the form of double-closedrings and double-closed-split rings. A carbon paste, serving asthe resistive layer, was inserted in various regions within the unitcell. The CST Microwave Studio software was used to obtain thereflection coefficient. Specific dimensions and conductivity of thepaste were selected to ensure better performance. Simulationresults showed that the reflection coefficient may be reduced by 8 dB, to14d B, by using carbon paste with the conventionalcopper layer.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.