Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In crystal plasticity under prescribed deformation, the incremental material response is potentially non-unique owing to slip system redundancy for most of the crystalline structures. Following Petryk, energy minimizing considerations give the way to select one of these solutions and the set of active systems, which depend on their more or less favorable orientation and their mutual interactions (latent hardening). This variational approach is extended here to confined plasticity in a finite volume, simulating a single crystal embedded in an aggregate. A slip gradient enhanced framework and related micro-hard boundary conditions are considered, using two defect energies introduced by Gurtin and coworkers: the first one takes the slip system polar dislocation densities as internal state variables and the second one is a quadratic potential of the dislocation density tensor. In both cases, micro-hard conditions amount to null flow for the two former quantities. For the classical one dimensional case of a strip in simple shear, the two models yield substantially different solutions, the second one coupling the gradients on the different systems. These results emphasize the necessity for a physically motivated modeling of gradient effects in the vicinity of grain boundary interfaces.
2
63%
EN
The shock discontinuity problem is analyzed in the case of elasto-plastic materials; the jump relations for internal state variables cannot be exhibited directly. For this purpose, we solve the internal shock structure problem, assuming that the shock front is a continuous transition in a thin layer, taking account of dissipative effects. The shock generating function P is introduced. The canonical equations of the shock structure are determined in the general case when the evolution of plasticity is derived from a pseudo-potential of dissipation D. The plane wave is analyzed for an isotropic material obeying a von Mises criterion, assuming that inside the shock the material is under pure axial compression: the existence and uniqueness results are established.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.