Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Recent numerical simulation of tsunami propagation proposed a new hypothesis about the origin of the 1771 tsunami that devastated the southwest Ryukyu district of Japan; a slip of the East Ishigaki Fault, a 44kmlong fault lying 50km off the east coast of Ishigaki Island, might be the cause of the 1771 tsunami. The present study is to test this hypothesis through visual observation by means of the precise seafloor image collected by the Hyper-Dolphin remotely operated vehicle. The hypothesis may be proved if definite evidence of a slip along the whole fault is obtained. Investigating the fault was accomplished by a reconnaissance survey at three representing fault segments: southern, central and northern. The result of the survey at the southern segment shows that the main fault scarp is covered by many large boulders. On the escarpment, 6m sections with a gradient of almost 90 degrees were observed. The result of the survey at the central segment shows similar characteristics as that at the southern segment. The northern segment was characterized by wide exposure of limestone outcrop with many cracks and fissures on the outcrop which represents nascent faulting. These facts suggest the northward propagation of the faulting along the main scarp. The result demonstrates that the amount of displacement at the fault segments is not uniform. This does not support the assumption taken into the numerical simulation; thus, it is unlikely that the slip at the fault generated the 1771 tsunami, even though simultaneous rupture at multiple fault segments are taken into account.
4
Content available remote A new method of mass measurement for checkweighers
86%
EN
A checkweigher is an automatic machine to measure the weight of in-motion products. It is usually located around the end of the production process and ensures the weight of a product within specified limits. Any products are taken out of line if their weights are out of the specified limits. It is usually equipped with an optical device. It is used to make a trigger to set the time duration to allow a product to move completely on the weigh belt for sampling the weight. In this paper, a new method of mass measurement for checkweighers is proposed which uses just signal processing without the optical device. The effectiveness of the method is shown through experiments. Also a possibility of faster estimation of weight is shown.
EN
Background: Anatomical knowledge of the duodenojejunal flexure is necessary for abdominal surgeries, and also important for physiologic studies about the duodenum. But little is known about the anatomy of this region in mammals. Here, we examined comparative anatomy to understand the anatomical formation of the duodenojejunal flexure in mammals. Materials and methods: The areas around the duonenojejunal flexure were observed in mouse, rat, dog, pig, and human, and the anatomical structures around the duodenojejunal junction in the animals were compared with those in human. Results: The superior and inferior duodenal folds, and the superior and inferior duodenal fossae were identified in all examined humans. In pig, the structures were not clearly identified because the duodenum strongly adhered to the retroperitoneum and to the mesocolon. In mouse, rat, and dog, only the plica duodenocolica, which is regarded as the animal counterpart of the superior duodenal fold in human, was identified, and other folds or fossae were not observed, probably because the duodenum was not fixed to the parietal peritoneum in those animals. Transection of the plica duodenocolica could return the normally rotated intestine back to the state of non-rotation in rat. Conclusions: This study showed the anatomical similarities and dissimilarities of the duodenojejunal flexure among the mammals. Anatomical knowledge of the area is useful for duodenal and pancreatic surgeries, and for animal studies about the duodenum. (Folia Morphol 2018; 77, 2: 286–292)
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.