Purpose: The aim of this work was to study structure changes in Fe-based amorphous ribbon under laser radiation, determine it dependence from laser treatment parameters and establish the correlation between structure and microhardness. Design/methodology/approach: Amorphous ribbons of Fe73.1Nb3Cu1.0Si15.5B7.4 alloy, obtained by rapid cooling from the melt, has been treated by pulsed laser radiation with wavelength λ = 1.06 μm and pulse duration τ = 130 ns. Structure transformation has been studied by means of X-ray diffraction method, which allowed us to determine the phase composition, volume fraction and grain size of crystalline phases has been determined. Findings: It has been shown, that laser treatment method allows forming an amorphous-nanocrystalline composite. It was found that microhardness of ribbon increases after irradiation and linearly depends on percent of crystalline phase. Practical implications: Laser treatment can be used as an substitute of isothermal heat treatment to produce amorphous-nanocrystalline materials with improved properties. Originality/value: The originality of this work is based on applying of pulse laser irradiation for modifying structure of amorphous Fe73.1Nb3Cu1.0Si15.5B7.4 alloy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.