Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Role of mucus in gastric mucosal protection
100%
EN
Even though there is no general agreement as to the mechanism of gastric mucosal protection, the consensus is that the initial brunt of luminal insults falls on the mucus layer which constitutes the only identifiable physical barrier between the gastric lumen and the mucosal surface. The continuous renewal and resilient nature of this layer efficiently counters peptic erosion of the gel, assures its viscoelastic and permselective properties, and provides a milieu for containment of the diffusing luminal acid by mucosal bicarbonate. Disturbances in this delicate balance lead to the impairment of the protective function of mucus resulting in gastric disease. Indeed, the weakening of gastric mucosal defense is intimately associated with the diminished viscoelastic qualities of mucus, decrease in hydrogen ion retardation capacity, and the extensive proteolysis of its mucin component. Although until recently the disintegration of the mucus coat was attributed exclusively to the enhanced activity of intragastric pepsin, our studies provided strong argument that a bacterial factor, namely infection by Helicobacter pylori, through the action of its protease and. lipase enzymes also is highly detrimental to the integrity of gastric mucus. Hence, agents capable of interfering with the pathogenic activity of this bacteria are becoming the drugs of choice in peptic ulcer therapy.
EN
Nitric oxide (NO), a pluripotent molecule, is an important biological messenger that plays a role in the regulation of tissue homeostasis and pathophysiological processes. Methods: Using sublingual salivary gland acinar cells in culture, we investigated the effect of NO on mucus glycoprotein synthesis, apoptotic processes, and the involvement of extracellular signal-regulated kinase (ERK) and p38 mitogen activated protein kinase (MAPK). Results: Exposure of the acinar cells to NO donor led to a dose-dependent decrease (up to 42.8%) in mucus glycoprotein synthesis, and this effect of NO was accompanied by a marked increase in caspase-3 activity and apoptosis. Inhibition of ERK with PD98059 accelerated (up to 35.4%) the NO-induced decrease in the glycoprotein synthesis, and cause further enhancement in caspase-3 (up to 27.2%) activity and apoptosis (64.9%). On the other hand, blockade of p38 kinase with SB203580 produced a dose-dependent reversal (up to 42%) in the NO-induced reduction in the glycoprotein synthesis, and substantially countered the NO-induced increases in caspase-3 activity (by 62.8%) and apoptosis (by 57.6%). Moreover, caspase-3 inhibitor, Ac-DEVD-CHO, not only blocked the NO-induced increase in caspase-3 activity but also produced an increase in the glycoprotein synthesis. Conclusions: Together, our data indicate that the modulatory influence of NO on salivary mucin synthesis is closely linked to ERK and p38 protein kinase activation, in conjunction with caspase-3 activation and apoptosis.
EN
Mucus glycoproteins (mucins), the principal determinants of mucus protective qualities and mucosal defense, are studied extensively to define pathological aberrations in the relation to gastrointestinal disease and to develop the mucous barrier strengthening agents. Recent work from our laboratory provided evidence as to the initial stages of the gastrointestinal mucin synthesis, molecular size of the apomucin, its macromolecular organization and interaction with other elements of gastrointestinal mucus. Using monoclonal antibodies against apomucin (clone 1H7), O- glycosylated with N-acetylgalactosamine apomucin (clone 2B4), and that against carboxyl terminal of the apomucin (clone 3G12), the mucin synthesizing polysomes were isolated and glycosylated peptides ranging in size from 6-60kDa identified. The in vitro synthesis in the cell-free system also afforded 60-64kDa products recognized by 1H7 and 3G12 antimucin MAbs. The obtained results provided evidence that the mucin core consists of 60kDa peptide which at cotranslational stage is O-glycosylated with N-acetylgalactosamine. Studies on mucin polymer assembly revealed that mucin preparations prepared by equilibrium density gradient centrifugation and Sepharose 2B chromatography (Mantle, M., Mantle, D., and Allen, A. (1981) Biochem. J. 195, 277-285) are not completely purified and contain DNA and extraneous proteins. The evidence was obtained that so called mucin “link protein”, 118kDa glycopeptide, is a N-glycosylated fragment of fibronectin, whereas the supposedly native undegraded mucin isolated by Carlstedt et al. (Biochem. J. (1983) 211, 13-22) was found to contain mucin-fibronectin-DNA complexes. The general picture that emerged from the studies is that the pure mucin consists of 60kDa glycosylated peptides only. The carboxyl terminal (8-12kDa fragment) of these peptides is not glycosylated (naked) and is responsible for mucin interaction with fibronectin and other fibronectin-like extracellular matrix proteins. While the formation of the mucosal coat depends on many other factors and extracellular components, our findings on mucin structure and interaction with the extracellular matrix proteins provide explanation as to the possible mechanism of mucin adherence to the epithelial surfaces.
5
Content available remote Role of endothelin-1-dependent up-regulation of leptin in oral mucosal repair
100%
EN
Leptin, a multifunctional hormone that regulates food intake and energy expenditure, has emerged recently as an important modulator of inflammatory cascades associated with wound healing. In this study, we applied the animal model of buccal mucosal ulcer to investigate the role of endothelin-1 (ET-1) and leptin in soft oral tissue repair. Using groups of rats with experimentally induced buccal mucosal ulcers we show that ulcer onset was characterized by a marked increase in the mucosal level of ET-1 and leptin. However, while the ET-1 level gradually declined with healing, the mucosal level of leptin increased reaching maximum expression on the 4th day of healing. Therapeutic administration of phosphoramidon, an inhibitor of ECE-1 activity, not only led to a 53.2% drop in the ET-1, but also produced a dose-dependent reduction (up to 50.9%) in the mucosal level of leptin and up to 42.3% decline in the rate of ulcer healing. A marked drop (54.2%) in the mucosal level of leptin and the reduction (46.8%) in the rate of ulcer healing was also attained in the presence of ETA receptor antagonist BQ610 administration, but not the ETB receptor antagonist BQ788. Moreover, administration of ERK inhibitor, PD98059 in the presence of ETB receptor antagonist, but not the ETA receptor antagonist, caused the reduction the mucosal leptin level as well as a decline in the rate of ulcer healing. Our findings are the first to implicate the requirement for both ET-1 and leptin in orderly progression of the events of soft oral tissue repair. We also show that ET-1 is a key factor in up-regulation of leptin production associated with oral mucosal ulcer healing , and that the effect of ET-1 on leptin production is a consequence of ETA receptor activation and subsequent signaling through MAPK/ERK.
EN
Peroxisome proliferator-activated receptor (PPAR), a member of the superfamily of nuclear receptor transcription factors, plays a critical role in the regulation of the expression of genes associated with inflammation. Using mucous acinar cells of sublingual salivary gland, we investigated the effect of PPAR activation on the disturbances in salivary mucin synthesis evoked by lipopolysaccharide (LPS) of periodontopathic bacterium, P. gingivalis. Exposure of the acinar cells to the LPS led to a dose-dependent decrease (up to 58.4%) in mucin synthesis, accompanied by a massive enhancement in apoptosis and NO production, and an induction in inducible nitric oxide synthase (NOS-2) activity. Activation of PPAR with a specific synthetic agonist, ciglitazone, prevented in a dose-dependent fashion the LPS-induced reduction in mucin synthesis, and the effect was reflected in a marked decrease in apoptosis, NO generation, and the expression of NOS-2 activity. The impedance by ciglitazone of the LPS-induced changes in mucin synthesis was blocked by PD98059, an inhibitor of extracellular signal regulated kinase (ERK), as well as wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Moreover, both agents caused further enhancement in the LPS-induced nitric oxide generation and countered the inhibitory effect of ciglitazone on the LPS-induced upregulation in NOS-2. The findings suggest that the impedance of P. gingivalis LPS inhibition of salivary mucin synthesis by PPAR agonist, ciglitazone, involves activation of ERK pathway by PI3K.
EN
Nuclear transcriptome initiates specific proteome that facilitates metabolic events culminating in restitution of cell components and reproduction of the discrete cellular function, but the magnitude of various genes induction and following proteomic, lipidomic, and glycomic processes provide distinctness to the final product and its function. In homeostasis, the challenged cell responds to stimuli in defined and predictable mode but in the disease such as ulcerative erosions the ablation of cell survival signals and cell apoptosis is enhanced. Therefore, to uncover the discreteness and dissimilarity of the pathological processes induced by Helicobacter pylori (H. pylori) lipopolysaccharide (LPS), not only measurement of the genomic events is crucial, but a complete cycle of events reproducing the cell specific proteins, lipids, and cell-specific environment created in situ require thorough investigation. Methods: An impact of H. pylori LPS-induced processes on posttranslational lipidomic activity in endoplasmic reticulum (ER), Golgi and apical membrane was evaluated in the in vitro paradigm assembled with components of the rat gastric mucosal epithelial cells. Results: In ER, the signals commanding synthesis of biomembrane in the presence of control, the LPS-derived or LPS-admixed cytosol was identical. The assembled vesicles contained the same amount of apoprotein and had the same lipid composition. Their biomembrane contained the same amount of sphingolipids in form of ceramide, which is determining factor of the ER-transport vesicle completion. The transport of apoprotein in ER vesicles to Golgi was also not changed. In Golgi, LPS-derived cytosol affected two distinct and concurrent with assembly of Golgi transport vesicles processes. The LPS-derived cytosol affected formation of Golgi transport vesicles destined to apical membrane and the incorporation (fusion) of Golgi vesicles with apical epithelial membrane. The LPS-derived cytosol decreased the production of Golgi vesicles by 15% and their fusion with the apical epithelial membrane by 83%. In contrast with wortmannin, the LPS-derived cytosol had no impact on Golgi transport vesicles association with the epithelial membrane. Conclusions: We concluded that LPS interferes with MAPK-dependent activation of cytosolic PLA2 since MAPKs immunoprecipitate added to the LPS-cytosol restored activation of cytosolic PLA2-specific fusion of the Golgi transport vesicles with apical mucosal cell membrane. On the other hand, wortmannin that inhibited the association of Golgi transport vesicles with apical membrane, interferes with cytosolic activity that controls association of PI3K-containing Golgi vesicles with the apical membrane. Together, our studies present evidence that allow to conclude that LPS affects MAPK-specific phosphorylation and PLA2-assisted membranes' fusion, whereas wortmannin affects association of PI3K- and PI3P-containing Golgi-derived transport vesicles with the membrane. In the final outcome, both actions result in a diminished or inhibited restitution of apical membrane.
|
|
tom 55
|
nr 1,1
EN
Platelet -activating factor (PAF), a phospholipid-derived messenger molecule, is now recognized as the most proximal mediator of cellular events triggered by bacterial lipopolysaccharide (LPS) stimulation. In this study, we assessed the role of PAF in the disturbances in salivary mucin synthesis evoked by LPS of periodontopathic bacterium, P. gingivalis. Using primary culture of mucous acinar cells of sublingual salivary gland, we show that a specific PAF antagonist, BN52020, prevents in a dose-dependent fashion (up to 83.7%) the LPS-induced reduction in mucin synthesis, and the effect is reflected in a marked decrease in the LPS-induced apoptosis (74.8%), NO generation (82.6%), and the expression of TNF-alpha (76.1%). The impedance by BN52020 of the LPS inhibitory effect on mucin synthesis was blocked by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), which also obviated the inhibitory effect of BN52020 on the LPS-induced upregulation in apoptosis, TNF-alpha , and NO. A potentiation in the impedance by BN52020 of the LPS detrimental effect on mucin synthesis was however attained with NOS-2 inhibitor, 1400W, while cNOS inhibitor, L-NNA caused a reduction in the impedance effect of BN52020. However, while 1400W and BN52020 countered the potentiating effect of wortmannin on the LPS-induced decrease in mucin synthesis, a further exacerbation of the effect of wortmannin occurred in the presence of L-NNA. The findings implicate PAF as a pivotal factor affecting the extent of pathological consequences of P. gingivalis infection on salivary glands capacity for mucin production, and suggest that its release in response to the LPS serves as a negative regulator of PI3K controlling the pathway of cNOS activation.
EN
In many systems, the integration of converging regulatory signals that relay on G protein-coupled receptor (GPCR) activation into functional cellular pathways requires the involvement of receptor tyrosine kinase. In this report, we provide evidence that activation of GPCR by ß-adrenergic agonist leading to stimulation in gastric mucin secretion requires epidermal growth factor receptor (EGFR) participation. Using [3H]glucosamine-labeled gastric mucosal cells, we show that stimulatory effect of ß-adrenergic agonist, isoproterenol, on mucin secretion was inhibited by EGFR kinase inhibitor, PD153035, as well as wortmannin, a specific inhibitor of PI3K. Both inhibitors, moreover, blunted the mucin secretory responses to ß-adrenergic agonist-generated second messenger, cAMP as well as adenylate cyclase activator, forskolin. The gastric mucin secretory responses to isoproterenol, furthermore, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR autophosphorylation, but not by ERK inhibitor, PD98059. The inhibition of ERK, moreover, did not cause attenuation in mucin secretion in response to cAMP and forskolin. The findings underline the role of EGFR as a convergence point in gastric mucin secretion triggered by ß-adrenergic GPCR activation, and demonstrate the requirement for Src kinase in EGFR transactivation.
15
71%
EN
The role of sulfation in the processing of mucus glycoprotein in gastric mucosa was investigated. Rat gastric mucosal segments were incubated in MEM at various medium sulfate concentrations in the presence of [³⁵S]Na₂ SO₄ [³H] glucosamine and [³H]proline, with and without chlorate an inhibitor of PAPS formation. The results revealed that the mucin sulfation attained maximum at 300 µM medium sulfate concentration. Introduction of chlorate into the incubation medium, while having no effect on the protein synthesis as evidenced by [³H]proline incorporation, caused at its optimal concentration of 2 mM a 90% decrease in mucin sulfation and a 40% drop in mucin glycosylation. Evaluation of mucin molecular forms distribution indicated the predominance of the high molecular mucin form in the interacellular fraction and the low molecular mucin from in the extracellular fraction. Increase in medium sulfate caused an increase in the high molecular weight mucin form in both fractions, and this effect was inhibited by chlorate. Also, higher medium sulfate concentrations led to a higher degree of sulfation in the high molecular weight mucin form, the effect of which was inhibited by chlorate. The results suggest that the sulfation process is an early event taking place at the stage of mucin subunit assembly and is required for mucin polymer formation. Hence, the disturbances in mucin sulfation process could be determinal to the maintenance of gastric mucus coat integrity.
EN
The effect of prolonged administration of an antiulcer drug, sofalcone, on the physicochemical properties of gastric mucus was investigated. The experiments were conducted with groups of rats receiving twice daily for three consecutive days a dose of 100 mg/kg sofalcone, while the control group received daily doses of vehicle. The rats were sacrificed 16 h after the last dose and gastric mucosa subjected to physicochemical measurements. The results revealed that sofalcone evoked a 23% increase in mucus gel dimension, while sulfo- and sialomucins content of the gel increased by 54 and 25%, respectively. These changes were accompanied by a 16% increase in mucus H⁺ retardation capacity, 2-fold increase in viscosity, and a 39% increase in the gel hydrophobicity. The mucus elaborated in the presence of sofalcone contained 67 % more covalently bound fatty acids, exhibited 10% lower content of protein, 30% higher content of carbohydrate, and 18% higher content of lipids. The mucus of the sofalcone group also showed an increase in the proportion of the high molecular weight mucus glycoprotein form, which in the control group accounted for about 30% of gel mucin, while its content in mucus gel of animals receiving sofalcone reached the value of 50%. The results indicate that sofalcone enhances the protective qualities of mucus component of gastric mucosal barrier.
EN
Homeostatic cell physiology is preserved through the fidelity of the cell membranes restitution. The task is accomplished through the assembly of the precisely duplicated segments of the cell membranes, and transport to the site of their function. Here we examined the mechanism that initiates and directs the restitution of the intra- and extracellular membranes of gastric mucosal cell. The homeostatic restitution of gastrointestinal epithelial cell membrane components was investigated by studying the lipidomic processes in endoplasmic reticulum (ER) and Golgi. The biomembrane lipid synthesis during the formation of transport vesicles in the systems containing isolated organelle and the cell-specific cytosol (Cyt) from rat gastric mucosal epithelial cells was assessed. The results revealed that lipids of ER transport vesicle and the transmembrane and intravesicular cargo are delivered en bloc to the point of destination. En bloc delivery of proteins, incorporated into predetermined in ER lipid environment, ensures fidelity of the membrane modification in Golgi and the restitution of the lipid and protein elements that are consistent with the organelle and the cell function. The mechanism that maintains apical membrane restitution is mediated through the synthesis of membrane segments containing ceramide (Cer). The Cer-containing membranes and protein cargo are further specialized in Golgi. The portion of the vesicles destined for apical membrane renewal contains glycosphingolipids and phosphatidylinositol 3-phosphate. The vesicles containing phosphatidylinositol 4-phosphate are directed to endosomes. Our findings revealed that the preservation of the physiological equilibrium in cell structure and function is attributed to (1) a complete membrane segment synthesis in ER, (2) its transport in the form of ER-transport vesicle to Golgi, (3) the membrane components-defined maturation of lipids and proteins in Golgi, and (4) en bloc transfer of the new segment of the membrane to the cell apical membrane or intracellular organelle.
19
70%
EN
The mediation of phospholipid secretion in rat sublingual salivary gland cells maintained in the presence of [³H]choline was investigated. The secretion of [³ H]choline-containing phospholipids was enhanced by β-adrenergic agonist, isoproterenol, to a greater extent than the cholinergic agoinst carbachol. A 2.9-fold increase in phospholipid secretion occurred with isoproterenol, while carbachol evoked only about 1.3-fold increase. In contrast to carbachol, the enhanced phospholipid secretion due to isoproterenol was accompanied by an increase in cAMP concentration. The secretion of phospholipids was also stimulated by dibutyryl-cAMP and the protein kinase C activator, phorbol myristate acetate, but not by 4a-phorbol 12, 13-didecanoate which does not activate protein kinase C. Furthermore, the effects of dibutyryl-cAMP and phorbol myristate acetate were additive. The phospholipids secreted in response to isoproterenol exhibited a 52% decrease in lysophosphatidylcholine, while those secreted in response to carbachol showed a 23% lower content of phosphatidylcholine, and were enriched in lysophosphatidylcholine (2.8-fold) and sphingomyelin (1.4-fold). The results suggest that salivary phospholipid secretion remains mainly under β-adrenergic control, while the phospholipid makeup is under cholinergic regulation.
EN
A dihydropyridine-sensitive gastric mucosal calcium channels were isolated from the solubilized epithelial cell membranes by affinity chromatography on wheat germ agglutinin. The channels following labeling the calcium antagonist receptor site with [³H]PN200-100 were reconstituted into phospholipid vesicles which exhibited active ⁴⁵Ca²⁺ uptake as evidenced by La³⁺ displacement assays. The uptake of calcium was independent of sodium and potassium gradients indicating the electroneutral nature of the process. The channels responded in a dose dependent manner to dihydropyridine calcium antagonist, PN200-110, which at 0.5/zm exerted maximal inhibitory affect of 66% on ⁴⁵Ca²⁺ uptake, while a 52% enhacement in ⁴⁵Ca²⁺ uptake occurred with a specific calcium channel activator, BAY K8644. On platelet-derived growth factor (PDGF) binding in the presence of ATP, channel protein showed an increase in tyrosine phosphorylation of 55 and 170 kDa calcium channel proteins. Such phosphorylated channels following reconstitution into vesicles displayed a 78% greater ⁴⁵Ca²⁺ uptake. The results demonstrate the importance of PDGF in the regulation of gastric mucosal calcium uptake.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.