Modernisation of marine power plants in the transport vessel fleet to satisfy the requirements of the International Maritime Organization is an urgent scientific and technical problem. Currently, the use of catalytic selective filters, dry and wet scrubber systems and exhaust gas recirculation for marine diesel engines is widely used for this purpose. An analysis of the use of ejection gas-air coolers is presented as an additional method of emission reduction. However, the use of such device does not neutralise the harmful emissions of power plant engines, but only increases the volume concentration of their exhaust gases. But this will help to increase the efficiency of dispersion of harmful emissions, by reducing the concentration of harmful emissions to values not exceeding the maximum permissible concentrations. Its efficiency depends on the load mode of the diesel engine. It is found that the initial concentration of harmful substances in combustion products due to their dilution with fresh air at 100% engine load is reduced by about 50%. The values of the reduction of the concentration and temperature of exhaust gases with the reduction of the engine load to 75% and 50% depending on the louvre angle are obtained. It is proved that ejection gas-air coolers can be an effective additional means for compliance with modern environmental parameters, especially when vessels are in special areas of the world’s oceans.
The maritime industry is a high-risk industry, which constantly has to make decisions in a rapidly changing environment. Therefore, understanding the essence of "situational awareness" is very important for making the right decision. In this regard, it is obvious that a correct situation analysis, based on a theoretical basis, creates the proper prerequisites for making the right decision in a developing situation, and vice versa. Considering this fact, this article proposes to study the factors that influence this phenomenon, their regularities and connections. It presents the data of a survey among seafarers to determine the level of understanding of situational awareness as a predominant component of the human factor in most accidents in the maritime industry.
Modernisation of the power plants of cargo fleet vessels to satisfy the requirements set out by the International Maritime Organisation is an urgent scientific and technical problem. The article presents the results of developing a solution to this problem that focuses on the exhaust gas system. We propose the use of ejection nozzles as part of this system. It was found that when the ejection coefficient in these nozzles is n = 3, it is possible to exclude the use of SCR reactors, thus reducing the operating costs of the marine power plant. Using a mathematical modelling method, the efficiency of operation of six types of nozzle as part of the exhaust gas system was investigated, and a constructive layout was proposed for the gas ducts and inlet louvres for supplying ambient air. To increase the efficiency of the proposed system, we consider several options for intensifying heat transfer processes through the use of dimple systems in the nozzles and nozzles with swirling flow. We found that these technical solutions would make it possible to further increase the efficiency of the systems by up to 19% abs.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.