The development of medical law elicits the necessity for a deepened reflection on the legal position of a child as a patient. The keynote of the reviewed book is human rights, patients’ rights and children’s rights. It turns out that the analyzed role has more aspects than could be expected, and the solution to the problems is not always univocal. Legal analysis with an interesting sociological aspect contained therein is a valuable elaboration also from the perspective of legislative necessities. The development of medicine requires a reaction of law, and the lawmaking calls for answers to fundamental, remarkably difficult questions related to the rights of a child as a patient, requiring cross-disciplinary knowledge.
In the present paper, the influence of bubble size on liquid penetration into the capillary was experimentally and numerically studied. In the experiment, bubbles were generated from a glass capillary (with an inner diameter equal to 1 mm) in a glass tank containing distilled water, tap water or an aqueous solution of calcium carbonate. These liquids differ in the value of their surface tension, which influences the bubble size. During experimental investigations, air pressure fluctuations in the gas supply system were measured. Simultaneously, the videos showing the liquids’ penetration into the capillary were recorded. Based on the videos, the time series of liquid movements inside the capillary were recovered. The numerical models were used to study the influence of bubble size on the velocity of liquid flow above the capillary and the depth of liquid penetration into the capillary. It was shown that the air volume flow rate and the surface tension have the greatest impact on the changes of pressure during a single cycle of bubble departure (Δp). The changes in pressure during a single cycle of bubble departure determine the depth of liquid penetration into the capillary. Moreover, the values of Δp and, consequently, the depth of liquid penetration can be modified by perturbations in the liquid velocity above the capillary outlet.
During flow boiling in a system with small (mini/micro) channels, several instabilities may occur at the same time, which overlap each other such a phenomenon complicates the analysis of boiling dynamics. The above mentioned processes cause that the fluctuation of recorded signals occur on various time scales. Although many criteria for the stability of two-phase flows are available, their practical application is limited (they need many recorded parameter of two phase flow). Methods which we are looking for should allow flow pattern identification based on a small number (or single) recorded signals. The paper presents a new approach to the recurrence plot method combined with Principal Component Analysis and Self-Organizing Map analysis. The single signal of pressure drop oscillations has been analyzed and used for flow pattern identification. New method of correlation analysis of flow patterns on video frames has been presented and used for flow pattern identification. The obtained results show that pressure drop oscillations and high speed video contain enough information about flow pattern for flow pattern identification.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.