New existence resilts are prosented for fuzzy differential and integral equations. Our analysis combines the stacking theorem with results concerning the maximal solution for an appropriate differential equation.
It is known that a frachet space F can be realized as a projective limit of a sequence of Banach spaces Ei. The space Kc(F) of all compact, convex subsets of a Frechet space, F, is realized as a projective limit of the semilinear metric spaces Kc(Ei). Using the notion of Hukuhara derivative for maps with values in Kc(F), we prove the local and global existence theorems for an initial value problem associated with a set differential equation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.