We study topological properties of Valdivia compact spaces. We prove in particular that a compact Hausdorff space K is Corson provided each continuous image of K is a Valdivia compactum. This answers a question of M. Valdivia (1997). We also prove that the class of Valdivia compacta is stable with respect to arbitrary products and we give a generalization of the fact that Corson compacta are angelic.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We prove that the dual unit ball of a Banach space X is a Corson compactum provided that the dual unit ball with respect to every equivalent norm on X is a Valdivia compactum. As a corollary we show that the dual unit ball of a Banach space X of density $ℵ_1$ is Corson if (and only if) X has a projectional resolution of the identity with respect to every equivalent norm. These results answer questions asked by M. Fabian, G. Godefroy and V. Zizler and yield a converse to Amir-Lindenstrauss' theorem.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We compare two methods of proving separable reduction theorems in functional analysis - the method of rich families and the method of elementary submodels. We show that any result proved using rich families holds also when formulated with elementary submodels and the converse is true in spaces with fundamental minimal system and in spaces of density ℵ1. We do not know whether the converse is true in general. We apply our results to show that a projectional skeleton may be without loss of generality indexed by ranges of its projections.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.