Modern induction motor (IM) drives with a higher degree of safety should be equipped with fault-tolerant control (FTC) solutions. Current sensor (CS) failures constitute a serious problem in systems using vector control strategies for IMs because these methods require state variable reconstruction, which is usually based on the IM mathematical model and stator current measurement. This article presents an analysis of the operation of the direct torque control (DTC) for IM drive with stator current reconstruction after CSs damage. These reconstructed currents are used for the stator flux and electromagnetic torque estimation in the DTC with space-vector-modulation (SVM) drive. In this research complete damage to both stator CSs is assumed, and the stator current vector components in the postfault mode are reconstructed based on the DC link voltage of the voltage source inverter (VSI) and angular rotor speed measurements using the so-called virtual current sensor (VCS), based on the IM mathematical model. Numerous simulation and experimental tests results illustrate the behavior of the drive system in different operating conditions. The correctness of the stator current reconstruction is also analyzed taking into account motor parameter uncertainties, especially stator and rotor resistances, which usually are the main parameters that determine the proper operation of the stator flux and torque estimation in the DTC control structure.
In modern areas of knowledge related to electric drive automation, there is often a need to predict the state variables of the drive system state variables, such as phase current and voltage, electromagnetic torque, stator and rotor flux, and others. This need arises mainly from the use of predictive control algorithms but also from the need to monitor the state of the drive to diagnose possible faults that have not yet occurred but may occur in the future. This paper presents a method for predicting stator phase current signals using a network composed of long-short-term memory units, allowing the simultaneous prediction of two signals. The developed network was trained on a set of current signals generated by software. Its operation was verified by simulation tests in a direct rotor flux-oriented control (DRFOC) structure for an induction motor drive in the Matlab/Simulink environment. An important property of this method is the possibility of obtaining a filtering action on the output of the network, whose intensity can be controlled by varying the sampling frequency of the training signals.
This article constitutes an introductory part of the special section on Intelligent Fault Monitoring and Fault-Tolerant Control in Power Electronics, Drives and Renewable Energy Systems. In the current issue of the journal, the first part of this section is published. Accepted articles are focussed mainly on the sensor-fault diagnosis methods for T-type inverter-fed dual- three phase PMSM drives, partial demagnetization, faults of the permanent magnet synchronous generator (PMSG) and online open phase fault detection (FD) in the sensorless five-phase induction motor drive implemented with an inverter output LC filter and third harmonic injection. Also, neural networks (NN) application in the detection of stator and rotor electrical faults of induction motors has been proposed in one of the papers, and the observer-based FD concept for unknown systems using input–output measurements was applied to a brushless direct current motor drive with unknown parameters.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.