A polyadic space is a Hausdorff continuous image of some power of the one-point compactification of a discrete space. We prove a Ramsey-like property for polyadic spaces which for Boolean spaces can be stated as follows: every uncountable clopen collection contains an uncountable subcollection which is either linked or disjoint. One corollary is that $(ακ)^ω$ is not a universal preimage for uniform Eberlein compact spaces of weight at most κ, thus answering a question of Y. Benyamini, M. Rudin and M. Wage. Another consequence is that the property of being polyadic is not a regular closed hereditary property.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property $R_λ'$ which we show is satisfied by all ξ-adic spaces. Whereas Property $R_λ'$ is productive, we show that a weaker (but more natural) Property $R_λ$ is not productive. Polyadic spaces are shown to satisfy a stronger chain condition called Property $R_λ''$. We use Property $R_λ'$ to show that not all compact, monolithic, scattered spaces are ξ-adic, thus answering a question of Chertanov's.