Aqueousmethanol extracts of Citrus junos, C. unshiu and C. sudachi fruit peel inhibited the growth of the roots and hypocotyls of alfalfa (Medicago sativa L.), cress (Lepi dium sativum L.) and lettuce (Lactuca sativa L.) seedlings. Significant reductions in the root and hypocotyl growth were observed as the extract concentration in creased in all bioassays. The inhibitory activity of C. junos extract on the growth of test plants was 3.3- to 17.9-fold and 3.6- to 20.6-fold greater than that of C. unshiu and C. sudachi extracts, respectively.The concentration in C. junos was 3.5- and 4.9-fold greater than that in C. unshiu and C. sudachi, respectively. Thus, there was a good correlation- between abscisic acid-b-D-glucopyranosyl ester (ABA-GE) concentrations in C. junos, C. unshiu and C. sudachi fruit peel and the inhibitory activities of their extracts.The concentratio of ABA-GE in C. junos fruit peel was in creased with fruit maturity as growth inhibitory activity of C. junos fruit peel was reported to be in creased with fruit maturity, indicating that the concentrations of A BA-GEin C. junos fruit peel was correlated with growth inhibitory activity of C. junos fruit peel in time course of fruit maturation. These findings suggest that ABA-GE may be involved in the growth in hibitory effect of C. junos, C. unshiu and C. sudachi fruit peel.
Tinospora tuberculata Beumee has been used widely as a folk medicine and several bioactive compounds have been isolated. However, no herbicidal compound has been reported in this species. Therefore, we investigated the presence of phytotoxins in T. tuberculata. The aqueous methanol extracts of T. tuberculata inhibited the growth of roots and shoots of cress (Lepidum sativum L.), lettuce (Lactuca sativa L.), timothy (Phleum pratense L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv.). The extract was then purified by several chromatographic runs with monitoring the inhibitory activity and the main phytotoxic substance was isolated. The chemical structure of the compound was determined by spectral data as syringin (4-[(1E)-3-Hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenyl β-ᴅ-glucopyranoside). It inhibited the root and shoot growth of all test plant species at concentrations >10 μM. The concentrations required for 50 % inhibition of root and shoot growth of cress and lettuce ranged from 78.2 to 412 μM, and that of timothy and barnyard grass renged from 9.8 to 73.2 μM. Effectiveness of syringin on monocotyledonous (timothy and barnyard grass) plants was greater than that on dicotyledonous (cress and lettuce) plants. These results suggest that syringin may contribute to the allelopathic effect caused by the T. tuberculata extract.