Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On sums and products of residues modulo p
100%
2
Content available remote On isolated, respectively consecutive large values of arithmetic functions
100%
Acta Arithmetica
|
1994
|
tom 66
|
nr 3
269-295
3
Content available remote On prime factors of integers of the form (ab+1)(bc+1)(ca+1)
63%
EN
1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if 𝓐 is a finite set of triples (a,b,c) of positive integers a, b, c with the property mentioned above then for some (a,b,c) ∈ 𝓐, (1) is greater than a constant times log|𝓐|loglog|𝓐|, where |𝓐| denotes the cardinality of 𝓐 (cf. Corollary to Theorem 1). Further, we show that this bound cannot be replaced by $|𝓐|^ε$ (cf. Theorem 2). Recently, Stewart and Tijdeman [9] proved the conjecture in another special case. Namely, they showed that if a ≥ b > c then (1) exceeds a constant times log((loga)/log(c+1)). In the present paper we give an estimate from the opposite side in terms of a (cf. Theorem 3).
4
Content available remote Some solved and unsolved problems in combinatorial number theory, ii
63%
EN
In an earlier paper [9], the authors discussed some solved and unsolved problems in combinatorial number theory. First we will give an update of some of these problems. In the remaining part of this paper we will discuss some further problems of the two authors.
5
Content available remote On the number of prime factors of integers of the form ab + 1
51%
6
Content available remote On pseudorandom binary lattices
51%
7
Content available remote On the number of pairs of partitions of n without common subsums
51%
8
Content available remote On the divisibility properties of sequences of integers (II)
38%
9
Content available remote On the divisibility properties of integers (I)
32%
10
Content available remote Some asymptotic formulas on generalized divisor functions, III
32%
11
Content available remote Über ein Problem von Erdös und Moser
26%
12
Content available remote On sums of sequences of integers, I
26%
13
Content available remote On a theorem of Erdös and Fuchs
26%
Acta Arithmetica
|
1980
|
tom 37
|
nr 1
333-338
14
Content available remote Über totalprimitive Folgen
23%
15
Content available remote Über reduzible Folgen
20%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.