Two-level Cretan matrices are orthogonal matrices with two elements, x and y. At least one element per row and column is 1 and the other element has modulus ≤ 1. These have been studied in the Russian literature for applications in image processing and compression. Cretan matrices have been found by both mathematical and computational methods but this paper concentrates on mathematical solutions for the first time. We give, for the first time, families of Cretan matrices constructed using the incidence matrix of a symmetric balanced incomplete block design and Hadamard related difference sets.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of order 4v are known are the following: 47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119. By using the propus construction, we found several symmetric Hadamard matrices of order 4v for v = 47, 73, 113.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.