We obtain a series of new integral formulae for a distribution of arbitrary codimension (and its orthogonal complement) given on a closed Riemannian manifold, which start from the formula by Walczak (1990) and generalize ones for foliations by several authors. For foliations on space forms our formulae reduce to the classical type formulae by Brito-Langevin-Rosenberg (1981) and Brito-Naveira (2000). The integral formulae involve the conullity tensor of a distribution, and certain components of the curvature tensor. The formulae also deal with a set of arbitrary functions depending on the scalar invariants of the co-nullity tensor. For a special choice of the functions our formulae involve the Newton transformations of the co-nullity tensor.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We introduce and study submanifolds with extrinsic curvature and second fundamental form related by an inequality that holds for isotropic submanifolds and becomes equality for totally umbilical submanifolds. The dimension of umbilical subspaces and the index of conformal nullity of these submanifolds with low codimension are estimated from below. The corollaries are characterizations of extrinsic spheres in Riemannian spaces of positive curvature.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let M be a Riemannian manifold equipped with two complementary orthogonal distributions D and D ⊥. We introduce the conformal flow of the metric restricted to D with the speed proportional to the divergence of the mean curvature vector H, and study the question: When the metrics converge to one for which D enjoys a given geometric property, e.g., is harmonic, or totally geodesic? Our main observation is that this flow is equivalent to the heat flow of the 1-form dual to H, provided the initial 1-form is D ⊥-closed. Assuming that D ⊥ is integrable with compact and orientable leaves, we use known long-time existence results for the heat flow to show that our flow has a solution converging to a metric for which H = 0; actually, under some topological assumptions we can prescribe the mean curvature H.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.