An attempt is made to investigate a class of polynomials defined in form of Rodrigues type formula and Mittag-Leffler Function. Some generating relations and finite summation formulae have also been obtained.
The aim of the present investigation was to study in vitro somatic embryogenesis and to screen calli for drought tolerance using mature embryos as explants. Mature embryos of three aromatic (Pusa Basmati 1, Pant Sugandh Dhan 17, Taraori Basmati) and one non-aromatic (Narendra 359) indica rice (Oryza sativa L.) varieties were used for developing callus on Murashige and Skoog medium supplemented with 2, 4-dichlorophenoxy acetic acid (2, 4-D) (2.0 mg l⁻¹ for Narendra 359 and 2.5 mg l⁻¹ for Pusa Basmati 1, Taraori Basmati and Pant Sugandh Dhan 17). Screening of calli was done by sub-culturing calli for 15 days on Murashige and Skoog (MS) basal medium supplemented with different concentrations of polyethylene glycol (PEG)-6000 as chemical drought inducer. Callus volume decreased and total proline content was found to be increased significantly with increase in PEG concentration. Narendra 359 showed best response in terms of callus growth at 70 g l⁻¹ of PEG. The highest percentage somatic embryogenesis among selected calli was observed in Pusa Basmati 1 and the lowest in Pant Sugandh Dhan 17. Excellent shooting and rooting (94%) was observed in MS + 0.1 mg l⁻¹ naphthalene acetic acid (NAA) and MS + 2.0 mg l⁻¹ 2, 4-D. Regenerated plants were successfully acclimatized with 98% efficiency in greenhouse and grown under pot conditions up to maturity. It was observed that PEG treated somaclones accumulated more proline, chlorophyll content and developed more tiller and height than normal somaclones. Ten random amplified polymorphic DNA (RAPD) primers were used to amplify genomic DNA of somaclones of different varieties. Level of genetic polymorphism existing among these somaclones indicates that these markers can be used in breeding program for improving varieties through in vitro techniques.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Deep convolution neural networks (CNNs) have demonstrated their capabilities in modern-day medical image classification and analysis. The vital edge of deep CNN over other techniques is their ability to train without expert knowledge. Time bound detection is very beneficial for the early cure of disease. In this paper, a deep CNN architecture is proposed to classify nondiabetic retinopathy and diabetic retinopathy fundus eye images. Kaggle 2015 diabetic retinopathy competition dataset and messier experiment dataset are used in this study. The proposed deep CNN algorithm produces significant results with 93% area under the curve (AUC) for the Kaggle dataset and 91% AUC for the Messidor dataset. The sensitivity and specificity for the Kaggle dataset are 90.22% and 85.13%, respectively; the corresponding values of the Messidor dataset are 91.07% and 80.23%, respectively. The results outperformed many existing studies. The present architecture is a promising tool for diabetic retinopathy image classification.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Transversal hypersurfaces of Lorentzian almost paracontact manifolds are studied. It is proved that transversal hypersurfaces of Lorentzian almost paracontact manifolds admit an almost product structure and almost product Lorentzian metric structure. We shall also derive a formula which gives the relation between the connection with respect to the Lorentzian metric g and that with respect to induced Lorentzian metric G. Some properties of Lorentzian (f, g, u, v, lambda)-structure, transversal hypersurfaces of Lorentzian cosymplectic manifolds and Lorentzian paracontact Sasakian manifolds are also studied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.