Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The research on gaseous detonation has recently become a very important issue, mainly due to safety reasons in connexion with increasing importance of gaseous fuels. To simulate detonation, the Direct Monte-Carlo Simulation technique has been used. This technique is known to be a very powerful tool for solving complex flow problems. Simple model of molecular collisions, making it possible to increase the thermal energy of gas in a way similar to the processes in the flame has been proposed. This model is capable of producing waves, having the features characteristic for detonation waves. Finally the efficiencies of two known methods of extinguishing detonation: cooling the gas by cold channel walls and cooling by an expansion wave have been checked.
EN
The paper is aimed at the investigation of the ignition process of supersonic jet in air based on experiments and numerical simulations. The experiments were conducted in a closed, air filled tube (at 1 bar) where high pressure hydrogen (70 - 150 bar) was injected through the nozzle of various diameters, and with various obstacle geometries in front of the jet. The obstacle in front of the jet was aimed at the induction of hydrogen ignition. Numerical simulations were performed with KIVA3V code with 2D axisymmetrical geometry of experimental setup. Experiments proved that hydrogen ignition does not take place within the whole shock tube volume but may be present only locally. Computations showed that hydrogen jet ignition is possible by diffusive ignition or reflected shock wave ignition mechanism. The number of performed simulations allowed to determine the accurate initial hydrogen pressure and geometry of the flow at which ignition takes place.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.