Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Several papers introduce the new distributions and their applications, including, among others, those of Ducey and Gove [7], Grine and Zeghdoudi [8], Chouia et al. [5], Seghier et al. [11], Beghriche and Zeghdoudi [4], where characterisation of a probability distribution plays an important role in statistical science. Several researchers studied the characterisations of probability distributions. For example, Su and Huang [12] study the characterisations of distributions based on expectations. In addition, Nanda [10] studies the characterisations by average residual life and the failure rates of functions of absolutely continuous random variables. Ahmadi et al. [1] consider the estimation based on the left-truncated and right randomly censored data arising from a general family of distributions. On the other hand, Ahsanullah et al. [2, 3] present two characterisations of Lindley distribution, standard normal distribution, t-Student’s, exponentiated exponential, power function, Pareto, and Weibull distributions based on the relation of failure rate, reverse failure rate functions with left and right truncated moments. Recently, Haseeb and Yahia [9] studied truncated moments for two general classes of continuous distributions. In this paper, two characterisations of the X-Lindley distribution, introduced by Chouia and Zeghdoudi [5] have been studied. They are based on the failure, relation of the inverse failure rate functions with the left and right truncated moments, respectively. Section 2 gives some properties of X-Lindley distribution. Section 3 discusses the characterisation of general distribution by left truncated and failure rate function and then right truncated and reverse failure rate function. Section 4 studies the characterisation of X-Lindley distribution by using the relation between left/right truncated moment and failure/reverse failure rate function. Finally, an illustrative example of X-Lindley distribution with other one-parameter distributions is given to show the superiority and flexibility of this model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.