Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring sounds related to respiratory disorder events were classified using a support vector machine (SVM) method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm optimization methods. The predicted AHI from the present study has a high correlation with the AHI from polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for diagnosis of OSAHS.
2
100%
EN
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common and high-risk sleep-related breathing disorder. Snoring detection is a simple and non-invasive method. In many studies, the feature maps are obtained by applying a short-time Fourier transform (STFT) and feeding the model with single-channel input tensors. However, this approach may limit the potential of convolutional networks to learn diverse representations of snore signals. This paper proposes a snoring sound detection algorithm using a multi-channel spectrogram and convolutional neural network (CNN). The sleep recordings from 30 subjects at the hospital were collected, and four different feature maps were extracted from them as model input, including spectrogram, Mel-spectrogram, continuous wavelet transform (CWT), and multi-channel spectrogram composed of the three single-channel maps. Three methods of data set partitioning are used to evaluate the performance of feature maps. The proposed feature maps were compared through the training set and test set of independent subjects by using a CNN model. The results show that the accuracy of the multi-channel spectrogram reaches 94.18%, surpassing that of the Mel-spectrogram that exhibits the best performance among the single-channel spectrograms. This study optimizes the system in the feature extraction stage to adapt to the superior feature learning capability of the deep learning model, providing a more effective feature map for snoring detection.
EN
Snoring is a typical and intuitive symptom of the obstructive sleep apnea hypopnea syndrome (OSAHS), which is a kind of sleep-related respiratory disorder having adverse effects on people’s lives. Detecting snoring sounds from the whole night recorded sounds is the first but the most important step for the snoring analysis of OSAHS. An automatic snoring detection system based on the wavelet packet transform (WPT) with an eXtreme Gradient Boosting (XGBoost) classifier is proposed in the paper, which recognizes snoring sounds from the enhanced episodes by the generalization subspace noise reduction algorithm. The feature selection technology based on correlation analysis is applied to select the most discriminative WPT features. The selected features yield a high sensitivity of 97.27% and a precision of 96.48% on the test set. The recognition performance demonstrates that WPT is effective in the analysis of snoring and non-snoring sounds, and the difference is exhibited much more comprehensively by sub-bands with smaller frequency ranges. The distribution of snoring sound is mainly on the middle and low frequency parts, there is also evident difference between snoring and non-snoring sounds on the high frequency part.
EN
In this paper, a system reliability model subject to Dependent Competing Failure Processes (DCFP) with phase-type (PH) distribution considering changing degradation rate is proposed. When the sum of continuous degradation and sudden degradation exceeds the soft failure threshold, soft failure occurs. The interarrival time between two successive shocks and total number of shocks before hard failure occurring follow the continuous PH distribution and discrete PH distribution, respectively. The hard failure reliability is calculated using the PH distribution survival function. Due to the shock on soft failure process, the degradation rate of soft failure will increase. When the number of shocks reaches a specific value, degradation rate changes. The hard failure is calculated by the extreme shock model, cumulative shock model, and run shock model, respectively. The closed-form reliability function is derived combining with the hard and soft failure reliability model. Finally, a Micro-Electro-Mechanical System (MEMS) demonstrates the effectiveness of the proposed model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.