Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote X-Ray Standing Wave Technique as a Tool in the Study of the Imperfect Crystals
100%
EN
The application of the X-ray standing wave (XSW) technique in the case of imperfect crystals meets serious theoretical and interpretational problems. However, well-known advantages of the XSW technique make it especially interesting to the study of the ordering of impurities and of various processes leading to changes in this ordering in various likes of imperfect crystals. In this work we try to answer the question how imperfection of a crystal may influence the changes in fluorescence yield during the XSW measurement. Two likes of imperfect crystals are studied: Si(111) implanted with high energetic Bi^{+} ions, and Zn_{1-x}Co_{x}Se single crystal with natural (111) face. The discussion of obtained results shows that general features of the X-ray standing wave field are conserved despite the considerable imperfections of the crystals. The results seem to support the applicability of the XSW technique to the study of imperfect materials, although some further theoretical effort would be required.
EN
X-ray diffraction topography (Bragg diffraction) and X-ray rocking curve measurements were used to study the perfection and structural properties of ZnTe epitaxial layers on the CdTe and GaAs substrates. ZnTe epitaxial layers on CdTe were grown by MBE method by using a machine made in the Institute of Physics of the Polish Academy of Sciences. The ZnTe layers on GaAs were produced on the other, factory-made MBE system. The comparison between the X-ray topographical images of the substrate and epitaxial layer shows that imperfections on the substrate surface cause imperfections in the epitaxial layer. The results of double-crystal diffractometry measurements show that the perfection of the layer on the GaAs substrate is higher than that on the CdTe. The presence of microtwining in the ZnTe layer on the CdTe substrate was confirmed by RHEED measurements. The X-ray standing wave fluorescent spectra were also measured for the samples.
3
Content available remote Structure and Magnetism of MBE-Grown Co/Cu Multilayers
61%
EN
Structural and magnetic properties of Co/Cu multilayers deposited in the ultra-high vacuum molecular beam epitaxy system on glass substrates with different modulations periods were investigated. A structural characterization was performed by means of RHEED and Auger spectroscopy (in situ), small angle X-ray reflectivity and scanning tunneling microscopy. The samples obtained have a textured, polycrystalline layered structure for deposition at room temperature. Magnetization and in-plane magnetoresistance measurements were performed as a function of Cu and Co layer thicknesses. An influence of different buffers and of interface quality on magnetic properties was investigated.
4
Content available remote X-Ray and Electron-Optical Characterization of ZnSe(Co) Crystal with Natural Face
61%
EN
Using complementary X-ray and electron-optical methods, a ZnSe(Co) crystal with natural face was investigated. X-ray diffraction methods such as double-crystal X-ray reflection topography, double-crystal diffractometry for rocking curve measurements, precise lattice constant measurements by the Bond technique were used for crystal structure characterization and X-ray fluorescence method for studies of chemical composition along the crystal. The scanning electron microscopic image of the crystal surface and reflection diffraction of the high-energy electrons enriched the crystal structure characterization. It was shown that X-ray characterization and reflection high-energy electron diffraction can be regarded as very important complementary tools for non-destructive investigation of the ZnSe(Co) crystal surface layers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.