Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this research cyanide-free leaching of pure gold and pressure oxidized refractory gold concentrate by thiosulfate-copper-ammonia solutions were examined. A quartz crystal microbalance (QCM) was used to study gold leaching as a factorial series where the best gold leaching rate (2.987 mg/(cm2∙h)) was achieved with a solution consisting of 0.2 M (NH4)2S2O3, 1.2 M NH3, 0.01 M CuSO4 and 0.4 M Na2SO4. Temperature had the greatest effect on the gold leaching rate. An increase in thiosulfate concentration (0.1–0.2 M) increased gold dissolution. The combined effect of temperature and ammonia concentration had a statistically significant effect on the gold leaching rate at 0.1 M M2S2O3. Combination of applied potential and NH3:S2O3 ratio had a statistically significant effect on the gold leaching rate at 0.2 M M2S2O3. An increase in applied potential decreased the gold dissolution rate at low ammonia concentrations but increased it at high concentrations. A pressure oxidized gold concentrate was leached for 6 hours in the batch reactor leaching experiments. The effect of rotative velocity (1.26–1.56 m/s) and slurry density (10–30 wt%) was investigated at the following leaching parameters: 0.2 M Na2S2O3, 0.6 M NH3, 0.01 M CuSO4, 0.4 M Na2SO4. Lower slurry density (10 wt%) resulted in a higher Au leaching efficiency. An increase in the rotation rate did not have an effect on the final Au leaching recovery. The best Au leaching efficiency (89%) was achieved with 590 rpm mixing, 1.56 m/s rotative velocity and 10 wt% slurry density.
EN
Sulphidic tailings from Finnish Hitura nickel mine and Pyhäsalmi multi-metal mine were leached using sulphuric acid and bioleached. The aim was to recover minor amounts of valuable Cu, Ni, Zn and Mn. Both tailings consisted mainly of iron and magnesium-containing minerals and acid neutralizing minerals. The solution after chemical leaching tests contained mostly iron and magnesium, in Hitura up to 11 g/dm3 Fe and 38 g/dm3 Mg while in Pyhäsalmi 8–9 g/dm3 Fe and 4 g/dm3 Mg. Amount of these metals was 20–100-fold larger than amount of valuable metals, which were typically 100-300 mg/dm3. Problems in chemical leaching were high consumption of acid and poor selectivity. Bioleaching using iron and sulphur oxidizing bacteria was more selective towards the valuable metals. Both in leaching and bioleaching the high concentration of iron and magnesium in solution will make metals recovery challenging.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.