Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przeprowadzone badania dotyczą otrzymywania materiału na bazie stali szybkotnącej i stali niestopowej. Do wytwarzania materiałów została zastosowana konwencjonalna metoda metalurgii proszków tj. prasowanie w matrycy zamkniętej, izostatyczne prasowanie na zimno (CIP) oraz nowoczesna metoda formowania niskociśnieniowego proszku. Metody formowania zostały tak zmodyfikowane by otrzymać materiały o strukturze składającej sie z trzech warstw tj. stali niestopowej, stali szybkotnącej i warstwy pośredniej. Badania obejmowały określenie optymalnych warunków spiekania, w szczególności temperatury i cyklu spiekania, jak również wybranych własności mechanicznych. Na podstawie porównania struktury i własności próbek wytwarzanych metodą formowania niskociśnieniowego, metodą CIP lub prasowania w matrycy zamkniętej stwierdzono, że w strukturze wszystkich badanych próbek w stanie spiekanym występują drobne węgliki równomiernie rozmieszczone w osnowie stali szybkotnącej. Zauważono, że niezależnie od metody wytwarzania podwyższenie optymalnej temperatury spiekania powoduje w warstwach złożonych ze stali szybkotnącej niekontrolowany rozrost i koagulacje węglików pierwotnych. Na podstawie badań mikrotwardości stwierdzono, że twardość próbek zarówno formowanych niskociśnieniowo jak i wytwarzanych metodą CIP oraz prasowanych w matrycy zamkniętej i spiekanych wzrasta wraz z temperatura spiekania. Ponadto stwierdzono, że stale formowane niskociśnieniowo cechują sie szerszym zakresem temperatury spiekania.
EN
Investigations carried out referred to obtaining material based on the highspeed steel and non-alloy steel. The conventional powder metallurgy method was used for manufacturing these materials, consisting in compacting the powder in the closed die and sintering it next, the isostatic pressing method (CIP), and the modern pressureless forming powder metallurgy. Forming methods were developed during the investigations for high-speed and non-alloy steel powders, making it possible to obtain materials with three layers in their structure. Investigations included determining the sintering conditions, and especially the temperature and treatment cycle, as well as examining the selected mechanical properties. It was found out, basing on the comparison of structures and properties of test pieces made with the pressureless forming method, as well as with the isostatic pressing and pressing in the closed die, with further sintering, that in structures of all examined test pieces in the sintered state fine carbides occurred distributed homogeneously in the highspeed steel layer. It was noticed, that increase of the sintering temperature, regardless of the manufacturing method, results in the uncontrolled growth and coagulation of the primary carbides and melting up to forming of eutectics in layers consisting of the high-speed steel. It was found out basing on the microhardness tests that hardness of test pieces both those pressureless formed, compacted in the closed die, and isostatically cold pressed and sintered grows along with the sintering temperature. It was also noted that the sintering temperature range is bigger in case of the pressureless formed materials.
3
88%
EN
Purpose: The goal of this project is development of the contemporary gradient materials using the powder metallurgy methods to ensure the required properties and structure of the designed material. Design/methodology/approach: The materials were fabricated with the conventional powder metallurgy method consisting in compacting the powder in the closed die and finally sintering it. Forming methods were developed for the HS6-5-2 high-speed steel and non-alloy steel powders, making it possible to obtain materials with three layers, and later - after their further modification - with six layers in their structure. Findings: It was found out basing on the microhardness tests that hardness of test pieces grows along with the sintering temperature and with carbon content in the interface and non-alloy layers. It was also observed that porosity decreases along with the carbon content in these layers. It was found out, basing on the comparison of structures and properties of the compacted and sintered test pieces, that in structures of all examined test pieces in the sintered state fine carbides occurred distributed homogeneously in the high-speed steel layer. Research limitations/implications: It was noticed, that increase of the sintering temperature results in the uncontrolled growth and coagulation of the primary carbides and melting up to forming of eutectics in layers consisting of the high-speed steel. Practical implications: Material presented in this paper has layers consisting on one side from the non-alloy steel with hardness growing with the increase of carbon content, and on the other side the high-speed steel, characteristic of the high ductility. Such material is tested for turning tools. Originality/value: The layers were poured in such way that the first layers consisted of the non-alloy steel and the last one from the high-speed steel, and were compacted next. The layers inside the material are mixes of the high-speed steel and non-alloy steel powders in the relevant proportions.
EN
The paper discusses a possibility to grow seeds on solutions of microelements and application of sprouts enriched in such a way as an alternative to commercial dietary supplements. It contains a short review of the approaches reported till now and a systematic experimental study, carried on the most frequently used seeds (Lens culinaris, Helianthus annuus, Vigna radiata, Glycine max, and Lepidium sativum).Seven metals (Fe, Cu, Zn, Ni, Co, Cd, and Mn) were studied. Seeds were grown on cellulose in 20°C temperature using deionized water enriched with metals in concentrations: 100, 50, 25, 12.5, 6.25, and 3.125 mg/L in a period of 4 days. The reference samples were the seeds grown on pure deionized water. Sprouts were mineralized by microwave radiation, and the metal content was quantified by ion chromatography with on-line post-column derivatization and spectrophotometric detection.The conclusions can be treated as general recommendations, which seeds should be grown and what concentrations of metals in solutions should be applied to provide good enrichment and to avoid risk of microelement overdose.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.