Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Water temperature is one of the most important indicators of aquatic system, and accurate forecasting of water temperature is crucial for rivers. It is a complex process to accurately predict stream water temperature as it is impacted by a lot of factors (e.g., meteorological, hydrological, and morphological parameters). In recent years, with the development of computational capacity and artifcial intelligence (AI), AI models have been gradually applied for river water temperature (RWT) forecasting. The current survey aims to provide a systematic review of the AI applications for modeling RWT. The review is to show the progression of advances in AI models. The pros and cons of the established AI models are discussed in detail. Overall, this research will provide references for hydrologists and water resources engineers and planners to better forecast RWT, which will beneft river ecosystem management.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.