Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Investigating critical precipitation phenomena is essential for predicting flood events. In this study, data from 8 hydrological stations in the state of Maranhão in northeastern Brazil were analyzed. The first step involved collecting valid data from the time series of 4 municipalities (Açailândia, Arame, Buriticupu, and Santa Luzia), which were affected by floods due to heavy rainfall in the region. The aim was to use a probabilistic model to predict the occurrence of new floods based on rainfall and river discharge patterns. Atypical precipitation points were identified in boxplots, confirming the correlation between heavy rainfall and floods in 2023. The exponential equations-based model estimated the river discharge during the floods. The Flow Duration Curves (FDC) indicated the probability of events of equal or greater magnitude occurring as follows: Açailândia (10%), Arame (15%), Buriticupu (32%), and Santa Luzia (<5%). Finally, significant trends in the monthly precipitation series were investigated using the Mann-Kendall test.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.