Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On continuous extension of uniformly continuous functions and metrics
100%
|
2009
|
tom 116
|
nr 2
191-202
EN
We prove that there exists a continuous regular, positive homogeneous extension operator for the family of all uniformly continuous bounded real-valued functions whose domains are closed subsets of a bounded metric space (X,d). In particular, this operator preserves Lipschitz functions. A similar result is obtained for partial metrics and ultrametrics.
2
Content available remote Coarse structures and group actions
100%
|
|
nr 1
149-158
EN
The main results of the paper are: Proposition 0.1. A group G acting coarsely on a coarse space (X,𝓒) induces a coarse equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.2. Two coarse structures 𝓒₁ and 𝓒₂ on the same set X are equivalent if the following conditions are satisfied: (1) Bounded sets in 𝓒₁ are identical with bounded sets in 𝓒₂. (2) There is a coarse action ϕ₁ of a group G₁ on (X,𝓒₁) and a coarse action ϕ₂ of a group G₂ on (X,𝓒₂) such that ϕ₁ commutes with ϕ₂. They generalize the following two basic results of coarse geometry: Proposition 0.3 (Shvarts-Milnor lemma [5, Theorem 1.18]). A group G acting properly and cocompactly via isometries on a length space X is finitely generated and induces a quasi-isometry equivalence g ↦ g·x₀ from G to X for any x₀ ∈ X. Theorem 0.4 (Gromov [4, p. 6]). Two finitely generated groups G and H are quasi-isometric if and only if there is a locally compact space X admitting proper and cocompact actions of both G and H that commute.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.