A perfect geodominating set in a graph G is a geodominating set S such that any vertex v ∈ V(G)\S is geodominated by exactly one pair of vertices of S. A k-perfect geodominating set is a geodominating set S such that any vertex v ∈ V(G)\S is geodominated by exactly one pair x, y of vertices of S with d(x, y) = k. We study perfect and k-perfect geodomination numbers of a graph G.
A pair x, y of vertices in a nontrivial connected graph G is said to geodominate a vertex v of G if either v ∈ {x, y} or v lies in an x - y geodesic of G. A set S of vertices of G is a geodominating set if every vertex of G is geodominated by some pair of vertices of S. In this paper we study strong geodomination in a graph G.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.